- •1. Назначение эконометрических моделей. Принципы их спецификации.
- •2. Типы переменных в эконометрических моделях.
- •3. Структурная форма спецификации эконометрических моделей.
- •4. Приведённая форма спецификации эконометрических моделей.
- •5. Взаимосвязь структурной и приведённой форм спецификации эконометрической модели.
- •6. Этапы построения эконометрических моделей.
- •7. Порядок оценивания линейной регрессионной модели из изолированного уравнения в Excel.
- •8. Смысл выходной статистической информации функции линейн.
- •9. Классификация регрессионных моделей.
- •10. Спецификация парной линейной регрессионной модели.
- •11. Предпосылки Гаусса-Маркова относительно случайного возмущения регрессионной модели.
- •12. Теорема Гаусса - Маркова.
- •13. Оценка параметров парной регрессионной модели методом наименьших квадратов (мнк) в координатной форме.
- •20. Проверка значимости оценок параметров линейной регрессионной модели.
- •21. Алгоритм проверки значимости оценок параметров линейной регрессионной модели в Excel.
- •22. Интервальная оценка ожидаемого значения зависимой переменной в парной регрессионной модели.
- •23. Интервальная оценка индивидуального значения зависимой переменной в парной регрессионной модели.
- •25. Коэффициент детерминации регрессионной модели.
- •26. Нецентрированный коэффициент детерминации регрессионной модели.
- •39. Алгоритм построения интервальной оценки значения зависимой переменной в множественной регрессионной модели в Excel.
- •40. Алгоритм проверки адекватности множественной регрессионной модели.
- •41. Скорректированный коэффициент детерминации в множественной регрессионной модели.
- •43. Спецификация регрессионной модели при наличии автокорреляции случайного возмущения.
- •44. Причины автокорреляции случайного возмущения.
- •45. Последствия автокорреляции случайного возмущения.
- •46. Алгоритм теста Дарбина-Уотсона на наличие (отсутствие) автокорреляции случайных возмущений.
- •47. Способы корректировки автокорреляции (авторегрессионные модели первого порядка).
- •48. Способы корректировки автокорреляции: алгоритм метода Кохрейна-Оркатта.
- •53. Способы корректировки гетероскедастичности. Метод взвешенных наименьших квадратов.
- •54. Способы корректировки гетероскедастичности. Доступный метод взвешенных наименьших квадратов.
- •55 Обобщенная регрессионная модель. Обобщенный метод наименьших квадратов.
- •56. Спецификация и оценивание мнк эконометрических моделей нелинейных по параметрам.
- •57. Примеры спецификаций регрессионных моделей нелинейных по параметрам.
- •58. Интерпретация параметров регрессионных моделей нелинейных по параметрам.
- •59. Способы включения случайных возмущений в спецификацию нелинейной по параметрам модели.
- •60. Спецификация и оценивание мнк эконометрических моделей нелинейных по переменным.
- •61. Примеры спецификаций регрессионных моделей нелинейных по переменным.
- •62. Интерпретация параметров регрессионных моделей нелинейных по переменным.
- •63. Проблема мультиколлинеарности в моделях множественной регрессии.
- •64. Признаки мультиколлинеарности.
- •65. Фиктивные переменные: определение, назначение, типы, смысл названий.
- •66. Фиктивная переменная сдвига: спецификация регрессионной модели с фиктивной переменной сдвига.
- •67. Экономический смысл параметра при фиктивной переменной сдвига.
- •68. Применение фиктивных переменных сдвига при исследовании сезонных колебаний: спецификация модели; проблема мультиколлинеарности.
- •69. Экономический смысл параметров при фиктивных переменных сдвига при исследовании сезонных колебаний.
- •70. Фиктивная переменная наклона: назначение; спецификация регрессионной модели с фиктивной переменной наклона.
- •71. Тест Чоу на наличие структурных изменений в регрессионной модели.
- •72. Оценка моделей с распределенными лагами с конечным числом лагов.
- •73. Оценка моделей с распределенными лагами с бесконечным числом лагов: метод геометрической прогрессии.
- •74. Оценка моделей с распределенными лагами с бесконечным числом лагов: метод Койка.
- •75. Проблемы оценки параметров регрессионных моделей с распределёнными лагами методом Койка
- •76. Оценка моделей с распределенными лагами: метод Алмон.
- •77. Тест Дарбина на наличие (отсутствие) автокорреляции вектора возмущений в авторегрессионных моделях.
- •78. Системы одновременных уравнений (соу): проблема оценивания структурных параметров.
- •79. Проблема идентификации системы одновременных уравнений соу.
- •80. Идентификация отдельных уравнений системы одновременных уравнений: порядковое условие.
- •81. Идентификация отдельных уравнений системы одновременных уравнений: ранговое условие.
- •82. Косвенный метод наименьших квадратов: алгоритм метода; условия применения.
- •83. Двухшаговый метод наименьших квадратов (дмнк): алгоритм метода; условия применения.
- •84. Корректировка оценки дисперсии возмущения при реализации алгоритма дмнк в Excel.
- •85. Корректировка оценок ско оценок параметров соу при реализации алгоритма дмнк в Excel.
57. Примеры спецификаций регрессионных моделей нелинейных по параметрам.
Среди нелинейных функций, которые могут быть приведены к линейному виду, в эконометрических исследованиях очень широко используется степенная функция (5).
(5)
Данное соотношение легко преобразовать в линейное уравнение с помощью логарифмирования (5):
(6)
После введения новых переменных, обозначающих логарифмы, получается линейное уравнение (6). Тогда процедура оценивания регрессии состоит в вычислении новых переменных для каждого наблюдения путём взятия логарифмов от исходных значений.
(7)
Затем оценивается регрессионная зависимость новых переменных. Для перехода к исходным переменным следует проэкспонировать полученные показатели. Аналогично можно рассматривать случай показательных или экспоненциальных функций.
показательная ; (8)
экспоненциальная . (9)
Пример: производственная модель Кобба-Дугласа.
Спецификация модели:
Прологарифмируем модель:
Замена переменных:
Спецификация линеаризованной модели:
Оценённая модель Кобба-Дугласа:
Вычисление оценок параметров:
.
58. Интерпретация параметров регрессионных моделей нелинейных по параметрам.
- значение эндогенной переменной при единичном значении регрессора.
Параметр
называется коэффициентом регрессии.
Его величина показывает среднее изменение
результата с изменением фактора на одну
единицу.
Параметр в степенной функции имеет четкое экономическое истолкование, т. е. он является коэффициентом эластичности. Это значит, что величина коэффициента показывает, насколько процентов изменится в среднем результат, если фактор изменится на 1%.
59. Способы включения случайных возмущений в спецификацию нелинейной по параметрам модели.
1. Мультипликативное включение:
Исходная спецификация:
Линеаризованная спецификация:
Замена переменных:
Распределение
вектора возмущений
-
нормальное с параметрами:
логнормальное
распределение с параметрами:
Исходная спецификация:
Линеаризованная спецификация:
Распределение
вектора возмущений
-
нормальное с параметрами:
2. Аддитивное включение:
Исходная спецификация:
Логарифмическое преобразование:
Вывод:
Логарифмическое преобразование не приводит к линеаризации модели.
60. Спецификация и оценивание мнк эконометрических моделей нелинейных по переменным.
Более простым является класс нелинейных переменных, в которых имеется нелинейность, но которые остаются линейными по входящим в них и подлежащих оценке параметрам. Сюда входят полиномы различной степени и равносторонняя гипербола. Такая нелинейная регрессия по включённым переменным в объяснение переменных простым их преобразованием (заменой) легко сводится к обычной линейной регрессии для новых переменных. Поэтому оценка параметров в этом случае выполняется просто по МНК, поскольку зависимости линейны по параметрам.
Так, важную роль в экономике играет нелинейная зависимость, описанная равносторонней гиперболой (1):
.
(1)
Произведём замену
переменных: обозначим
.
В результате получается линейная модель:
(2)
Её параметры хорошо оцениваются по МНК, и сама зависимость характеризует связь удельных расходов сырья, топлива, материалов с объёмом выпускаемой продукции, временем обращения товаров и всех этих факторов с величиной товарооборота.
В общем случае парабола второй степени, так же как и полиномы более высокого порядка, при линеаризации принимают вид уравнения множественной регрессии:
парабола второй
степени
.
(3)
Применим метод
замены переменных:
После преобразования получается линейная
модель:
(4)
Следовательно, полином любого порядка сводится к линейной регрессии с ее методами оценивания параметров и проверки гипотез. Как показывает опыт большинства исследователей, среди нелинейной полиномиальной регрессии чаще всего используется парабола второй степени; в отдельных случаях – полином третьего порядка. Ограничения в использовании полиномов более высоких степеней связаны с требованием однородности исследуемой совокупности: чем выше порядок полинома, тем больше изгибов имеет кривая и соответственно менее однородна совокупность по результативному признаку.
