- •Ю.В.Жиркин
- •Синицкий в.М.
- •Чиченев н.А.
- •Оглавление
- •Глава 8. Выбор смазочных материалов для узлов трения 121
- •Глава 1. Определение параметров планов испытаний 152
- •Глава 2. Оценивание показателей безотказности 160
- •Глава 3. Оценивание показателей долговечности 180
- •Распределение Пуассона 206
- •Предисловие
- •Методические указания
- •Введение
- •Часть I. Надежность металлургических машин
- •Раздел 1. Основы теории надежности
- •Глава 1. Основные понятия и определения
- •Глава 2. Показатели надежности
- •Глава 3. Надежность невосстанавливаемого элемента
- •3.1. Вероятность отказа и вероятность
- •3.2. Интенсивность отказов
- •3.3. Средняя наработка до отказа и другие числовые
- •Глава 4. Распределения, используемые в теории надежности
- •4.1. Распределения и область их применения
- •4.2. Экспоненциальный (показательный) закон
- •4.3. Нормальный закон
- •4.4. Логарифмически нормальный закон
- •4.5. Закон Вейбулла
- •4.6. Непараметрические классы распределений наработки
- •Глава 5. Надежность восстанавливаемого элемента
- •Восстанавливаемый элемент
- •5.2. Распределение Пуассона
- •Восстанавливаемый элемент
- •Глава 6. Надежность систем
- •6.1. Система с последовательным соединением элементов
- •6.2. Система с параллельным соединением элементов
- •6.2.1. Система с нагруженным резервом
- •6.2.2. Система с ненагруженным резервом
- •Глава 7. Ремонтопригодность машин
- •Глава 8. Испытание на надежность
- •8.1. Сбор информации
- •8.2. Биноминальный план испытаний
- •8.3. Планы испытаний на надёжность
- •Раздел 2. Повышение надежности
- •Глава 1. Пути повышения безотказности
- •Глава 2. Повреждения деталей металлургических машин
- •2.1. Механические повреждения
- •2.2. Термические повреждения
- •2.3. Коррозионные повреждения
- •2.4. Эрозионные повреждения
- •2.5. Кавитационные повреждения
- •Глава 3. Износ деталей металлургических машин
- •Глава 4. Приработка трущихся поверхностей
- •Глава 5. Подбор материалов для узлов трения
- •Глава 6. Виды изнашивания
- •6.1. Характеристики нагруженности узла трения
- •6.2. Адгезионное изнашивание
- •6.3. Абразивное изнашивание
- •6.4. Окислительное изнашивание
- •6.5. Усталостное изнашивание
- •6.6. Фреттинг-коррозия
- •6.7. Избирательный перенос
- •Глава 7. Смазка и смазочные материалы
- •7.1. Виды смазки
- •7.2. Гидродинамическая жидкостная смазка
- •7.3. Гидростатическая жидкостная смазка
- •7.4. Эластогидродинамическая смазка
- •7.5. Граничная смазка
- •7.6. Смазочные материалы
- •7.6.1. Общая характеристика
- •7.6.2. Классификация минеральных масел
- •7.6.3. Показатели физических свойств минеральных масел
- •7.6.4. Фильтрация масел
- •7.6.5. Регенерация минеральных масел
- •7.6.6. Пластичные смазочные материалы и их свойства
- •7.6.7. Твердые смазочные материалы
- •Глава 8. Выбор смазочных материалов для узлов трения
- •8.1. Методика выбора смазочных материалов
- •8.2. Выбор вида смазочного материала
- •8.2.1. Общая характеристика смазочных материалов
- •8.2.2. Выбор вида смазочных материалов для узлов трения
- •8.3. Выбор марки минерального масла
- •8.3.1. Выбор марки минерального масла
- •8.3.2. Выбор марки минерального масла
- •8.3.3. Выбор марки минерального масла
- •Оценивание показателей надёжности
- •Глава 1. Определение параметров планов испытаний
- •Глава 2. Оценивание показателей безотказности
- •2.1. Оценивание показателей безотказности на основе
- •Экспоненциальное распределение
- •Нормальное распределение
- •Логарифмически нормальное распределение
- •Распределение Вейбулла
- •2.2. Оценивание показателей безотказности
- •Оценивание показателей безотказности при испытании
- •Глава 3. Оценивание показателей долговечности
- •3.1. Модели оценивания
- •3.2. Непараметрические модели оценивания
- •3.3. Оценивание среднего ресурса
- •3.4. Оценивание остаточного ресурса
- •Значения функций и квантилей распределения
- •Приложение в основные характеристики смазочных материалов
8.2.2. Выбор вида смазочных материалов для узлов трения
Подшипники скольжения
В подшипниках скольжения при скоростях скольжения более 1 м/с и постоянном направлении относительного скольжения поверхностей наиболее эффективны ЖСМ (минеральные масла).
Применение ПСМ целесообразно при скоростях скольжения менее 1 м/с при высоких контактных нагрузках (более 10 МПа), при постоянном изменении направления скольжения поверхностей, при температурах -50 ... +200 .
При температуре выше 250 необходимо использование ТСМ.
Подшипники качения
В подшипниках качения наилучшим смазочным материалом являются минеральные масла. Но их использование усложняет конструкцию подшипникового узла. При использовании ПСМ упрощается конструктивное исполнение и во многих случаях облегчается его эксплуатация.
Минеральные масла рекомендуется использовать в подшипниках качения при частоте вращения менее 5 - 10 об/мин и окружной скорости более 5 м/с.
Исходя из условий технической эксплуатации подшипниковых узлов наиболее предпочтительным является применение в них ПСМ. На сегодняшний день подшипники качения являются основными потребителями ПСМ.
Наиболее эффективно применение ПСМ в герметизированных подшипниковых узлах и в подшипниках, подверженных ударным нагрузкам.
Как правило, ограничением на применение ПСМ является окружная скорость, лимитируемая через параметр (d ·n) (d - внутренний диаметр подшипника, мм; n - частота вращения, об/мин).
При значении параметра d ·n, не превышающем допустимое значение [d ·n] целесообразно использовать ПСМ.
Допустимые значения параметра [d ·n], в зависимости от типа подшипника при среднем нагружении (нормальные контактные напряжения не более 2 ·103 МПа) следующие:
Тип подшипника |
[d ·n] |
Радиальный шариковый |
5 ·105 |
Радиально-упорный шариковый |
4 ·105 |
Цилиндрический роликовый |
4 ·105 |
Конический роликовый |
2 ·105 |
Цилиндрический роликовый двухрядный |
5 ·105 |
Упорный шариковый |
|
Игольчатый подшипник |
|
Примечание: h
- высота подшипника, мм;
- наружный диаметр, огибающий иглы, мм.
Величина допустимых значений [d ·n] снижается на:
- для тяжелонагруженных подшипников (контактные напряжения до 5 ·103 МПа) – 25%;
- при вертикальном расположении подшипников – 25%;
- при вращении внешнего кольца – 50%;
- при спаренных подшипниках – 25%;
Контактные нормальные напряжения можно определять из зависимостей для:
шарикоподшипников
(8.1)
роликоподшипников
(8.2)
где R – радиальная нагрузка, МН;
i - количество рядов тел качения;
z - количество тел качения в ряду;
-
диаметр ролика, м.;
l - длина ролика, м;
- угол наклона роликов;
- сумма кривизны ролика
и кольца.
(8.3)
- средний диаметр подшипника.
Зубчатые зацепления
Основным смазочным материалом для зубчатых зацеплений являются минеральные масла. И только для открытых и тихоходных зубчатых передач ( < 0,5 м/с) возможно использование ПСМ. ТСМ для зубчатых зацеплений применяются в экстремальных условиях при температурах, превышающих 300 °С.
Для открытых зубчатых передач рекомендуется применять битумные композиции и ПСМ, характеристики которых приведены в табл. 5, 6 прил. В.
Зубчатые муфты
В зубчатых муфтах наиболее эффективно применение высоковязких минеральных масел, но трудности по обеспечению герметичности в процессе эксплуатации зубчатых муфт побуждают применять ПСМ, а также битумные композиции, рекомендуемые для открытых зубчатых передач (например, 03П-1).
Направляющие скольжения
Наиболее эффективным и широко используемым видом смазочного материала являются минеральные масла.
