
- •2. Понятие «жидкость». Капельная, реальная, идеальная, упругая жидкость. Силы, действующие в жидкости.
- •4. Гидростатическое давление (гд). Два основных свойства гд (с доказательством).
- •5. Гидростатическое давление: атмосферное, избыточное, вакууметрическое, абсолютное.
- •Эксцентриситет
- •Определение
- •Центр величины ц ентр водоизмещения — Центр объема жидкости, вытесненной плавающим телом в связанной с ним системе отсчета
- •Метацентр
- •Метацентрическая высота
- •Запас плавучести
- •13. Уравнение неразрывности потока. Вывод уравнения. Применение уравнения к решению практических задач.
- •15. Геометрических смысл уравнения Бернулли. Энергетический смысл уравнения Бернулли. Полный напор. Напорная и пьезометрическая линии.
- •16. Гидравлические элементы живого сечения (площадь живого сечения, длина смоченного периметра, гидравлический радиус). Два режима движения жидкости (ламинарный и турбулентный).
- •17. Опыты о.Рейнольдса. Критические числа Рейнольдса. Определение числа Рейнольдса.
Эксцентриситет
Эллипс (e=1/2), парабола (e=1) и гипербола (e=2) с фиксированными фокусом F и директрисой. (|FM| = e |MM'|)
Эксцентрисите́т
— числовая характеристика конического
сечения,
показывающая степень его отклонения
от окружности.
Обычно обозначается “
”
или “
”.
Эксцентриситет инвариантен относительно движений плоскости и преобразований подобия.
Определение
Все невырожденные конические сечения, кроме окружности, можно описать следующим способом:
Выберем
на плоскости точку
и
прямую
и
зададим вещественное число
.
Тогда геометрическое
место точек
,
для которых отношение расстояний до
точки
и
до прямой
равно
раз,
является коническим сечением. То есть,
если
есть
проекция
на
то
Тело давления - объем жидкости, лежащий над криволинейной поверхностью, между вертикальными плоскостями, проходящими через крайние образующие и свободной поверхностью жидкости или ее продолжением.
Тело давления – это объем, ограниченный криволинейной поверхностью, пьезометрической плоскостью и вертикальными поверхностями, проходящими через периметр криволинейной поверхности.
Fверт = g*Vтд
11. Закон Архимеда. Вывод уравнения для определения Архимедовой силы. Центр водоизмещения. Условия плавания и остойчивости тела. Метацентр. Метацентрическая высота. Ватерлиния. Осадка. Запас плавучести.
Закон Архимеда
Закон Архимеда формулируется следующим образом[1]: на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу жидкости (или газа) в объёме тела. Сила называется силой Архимеда:
где
—
плотность
жидкости (газа),
—
ускорение
свободного падения,
а
—
объём погружённого тела (или часть
объёма тела, находящаяся ниже поверхности).
Если тело плавает
на поверхности или равномерно движется
вверх или вниз, то выталкивающая сила
(называемая также архимедовой силой)
равна по модулю (и противоположна по
направлению) силе тяжести, действовавшей
на вытесненный телом объём жидкости
(газа), и приложена к центру
тяжести
этого объёма.
Тело плавает, если сила Архимеда уравновешивает силу тяжести тела.
Следует заметить, что тело должно быть полностью окружено жидкостью (либо пересекаться с поверхностью жидкости). Так, например, закон Архимеда нельзя применить к кубику, который лежит на дне резервуара, герметично касаясь дна.
Что касается тела, которое находится в газе, например в воздухе, то для нахождения подъёмной силы нужно заменить плотность жидкости на плотность газа. Например, шарик с гелием летит вверх из-за того, что плотность гелия меньше, чем плотность воздуха.
Закон Архимеда можно объяснить при помощи разности гидростатических давлений на примере прямоугольного тела.
где PA, PB — давления в точках A и B, ρ — плотность жидкости, h — разница уровней между точками A и B, S — площадь горизонтального поперечного сечения тела, V — объём погружённой части тела.
Тот факт, что на погруженное в воду тело действует некая сила, всем хорошо известен: тяжелые тела как бы становятся более легкими – например, наше собственное тело при погружении в ванну. Купаясь в речке или в море, можно легко поднимать и передвигать по дну очень тяжелые камни – такие, которые не удается можем поднять на суше; то же явление наблюдается, когда по каким-либо причинам выброшенным на берегу оказывается кит – вне водной среды животное не может передвигаться – его вес превосходит возможности его мышечной системы. В то же время легкие тела сопротивляются погружению в воду: чтобы утопить мяч размером с небольшой арбуз требуется и сила, и ловкость; погрузить мяч диаметром полметра скорее всего не удастся. Интуитивно ясно, что ответ на вопрос – почему тело плавает (а другое – тонет), тесно связан с действием жидкости на погруженное в нее тело; нельзя удовлетвориться ответом, что легкие тела плавают, а тяжелые – тонут: стальная пластинка, конечно, утонет в воде, но если из нее сделать коробочку, то она может плавать; при этом ее вес не изменился. Чтобы понять природу силы, действующей на погруженное тело со стороны жидкости, достаточно рассмотреть простой пример (рис. 1).
Кубик с ребром a погружен в воду, причем и вода, и кубик неподвижны. Известно, что давление в тяжелой жидкости увеличивается пропорционально глубине – очевидно, что более высокий столбик жидкости более сильно давит на основание. Гораздо менее очевидно (или совсем не очевидно), что это давление действует не только вниз, но и в стороны, и вверх с той же интенсивностью – это закон Паскаля.
Если рассмотреть силы, действующие на кубик (рис. 1), то в силу очевидной симметрии силы, действующие на противоположные боковые грани, равны и противоположно направлены – они стараются сжать кубик, но не могут влиять на его равновесие или движение. Остаются силы, действующие на верхнюю и на нижнюю грани. Пусть h – глубина погружения верхней грани, – плотность жидкости, g – ускорение силы тяжести; тогда давление на верхнюю грань равно
· g · h = p1
а на нижнюю
· g(h+a) = p2
Сила давления равна давлению, умноженному на площадь, т.е.
F1 = p1 · a\up122, F2 = p2 · a\up122 , где a – ребро кубика,
причем сила F1 направлена вниз, а сила F2 – вверх. Таким образом, действие жидкости на кубик сводится к двум силам – F1 и F2 и определяется их разностью, которая и является выталкивающей силой:
F2 – F1 =· g· (h+a) a\up122 – gha ·a2 = pga2
Сила – выталкивающая, так как нижняя грань, естественно, расположена ниже верхней и сила, действующая вверх, больше, чем сила, действующая вниз. Величина F2 – F1 = pga3 равна объему тела (кубика) a3, умноженному на вес одного кубического сантиметра жидкости (если принять за единицу длины 1 см). Другими словами, выталкивающая сила, которую часто называют архимедовой силой, равна весу жидкости в объеме тела и направлена вверх. Этот закон установил античный греческий ученый Архимед, один из величайших ученых Земли.
Если тело произвольной формы (рис. 2) занимает внутри жидкости объем V, то действие жидкости на тело полностью определяется давлением, распределенным по поверхности тела, причем заметим, что это давление совершенно не зависит от материала тела – («жидкости все равно на что давить»).
Для определения результирующей силы давления на поверхность тела нужно мысленно удалить из объема V данное тело и заполнить (мысленно) этот объем той же жидкостью. С одной стороны, есть сосуд с жидкостью, находящейся в покое, с другой стороны внутри объема V – тело, состоящее из данной жидкости, причем это тело находится в равновесии под действием собственного веса (жидкость тяжелая) и давления жидкости на поверхность объема V. Так как вес жидкости в объеме тела равен pgV и уравновешивается равнодействующей сил давления, то величина ее равна весу жидкости в объеме V, т.е. pgV.
Сделав мысленно обратную замену – поместив в объеме V данное тело и отметив, что эта замена никак не скажется на распределении сил давления на поверхность объема V, можно сделать вывод: на погруженное в покоящуюся тяжелую жидкость тело действуют направленная вверх сила (архимедова сила), равная весу жидкости в объеме данного тела.
Аналогично можно показать, что если тело частично погружено в жидкость, то архимедова сила равна весу жидкости в объеме погруженной части тела. Если в этом случае архимедова сила равна весу, то тело плавает на поверхности жидкости. Очевидно, что если при полном погружении архимедова сила окажется меньше веса тела, то оно утонет. Архимед ввел понятие «удельного веса» , т.е. веса единицы объема вещества:pg; если принять, что для воды, то сплошное тело из вещества, у которого утонет, а при будет плавать на поверхности; при тело может плавать (зависать) внутри жидкости. В заключение заметим, что закон Архимеда описывает поведение аэростатов в воздухе (в покое при малых скоростях движения).