Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
OBMEN_VESchESTV_I_ENERGII_V_KLETKE.docx
Скачиваний:
3
Добавлен:
01.07.2025
Размер:
59.89 Кб
Скачать
  1. Энергетический обмен в клетке.

Энергетический обмен (диссимиляция, катаболизм) – совокупность реакций ферментативного расщепления органических соединений (белков, жиров, углеводов) и образования соединений, богатых энергией (аденозинтрифосфат и др.) АТФ и подобные ему соединения (макроэргические) обеспечивают разнообразные процессы жизнедеятельности: биологический синтез, поддержание различий концентрации веществ (градиентов) и перенос веществ через мембраны, проведение электрических импульсов, мышечную работу, выделение различных секретов и т. д.

Химическая энергия питательных веществ, поступающих в организм, заключена в ковалентных связях между атомами в молекулах органических соединений: при разрыве пептидной связи высвобождается около 12 кДж на 1 моль. В глюкозе количество потенциальной энергии, заключенной в связях между атомами С, Н и О, составляет 2800 кДж на 1 моль (т. е. на 180 г глюкозы). При расщеплении глюкозы выделяется диоксид углерода и вода, при этом выделяется энергия согласно итоговому уравнению:

С6Н12О6 + 6О2 = 6Н2О + 6СО2 + 2800 кДж

Часть энергии, высвобожденной из питательных веществ, рассеивается в форме теплоты, а часть аккумулируется, т. е. накапливается в богатых энергией фосфатных связях АТФ. В молекулах АТФ запасается больше половины той энергии, которую можно извлечь из органических молекул при окислении их до углекислого газа и воды. Благодаря образованию АТФ энергия преобразуется в более удобную концентрированную форму, из которой она может легко высвобождаться. В клетке в среднем находится 1 млрд. молекул АТФ, распад которых до АДФ и фосфата обеспечивает энергией множество биологических и химических процессов, протекающих с поглощением энергии.

АТФ – мононуклеотид аденозинтрифосфат, который состоит из азотистого основания аденина, сахара рибозы и трех остатков фосфорной кислоты, соединенных макроэргическими (высокоэнергетическими) связями.

В условиях нейтральной среды клетки АТФ находится в виде соли, и вместо ОН-групп в составе остатков фосфорной кислоты имеются отрицательно заряженные атомы кислорода (О2-). Такая молекула нестабильна и легко гидролизуется под действием специфических ферментов, расщепляясь последовательно до АДФ, АМФ и структурных компонентов.

АТФ + Н2О = АДФ + Н3РО4 + 40 кДж;

АДФ + Н2О = АМФ + Н3РО4 + 40 кДж;

АМФ + Н2О = Аденин + рибоза + Н3РО4 + 13,8 кДж.

Обратный процесс превращения АМФ в АДФ, АДФ в АТФ называется фосфорилированием и проходит в митохондриях, пластидах путем присоединения остатка фосфорной кислоты с выделением воды и поглощением большого количества энергии (40 кДж). Благодаря богатым энергией связям в молекуле АТФ клетка может накапливать большое количество энергии в маленьком пространстве и расходовать ее по мере надобности. Ферменты, катализирующие фосфорилирование и дефосфорилирование, относятся к АТФ-синтетазам. АТФ обновляется постоянно и чрезвычайно быстро (у человека 1 молекула АТФ живет менее 1 минуты).

Другие нуклеотиды: гуанозин-, цитидин-,уридин- и тимидинмонофосфаты - также могут присоединять фосфорную кислоту и превращаться в ди- и трифосфаты. Именно в виде трифосфатов эти нуклеотиды используются для первичного синтеза нуклеиновых кислот, и энергия отщепления от трифосфата макроэргического фосфора используется для соединения их в полинуклеотиды. Гуанозинтрифосфат является источником энергии для белоксинтезирующей деятельности рибосом. Известны и другие фофорилированные соединения, аналогичные по функциям АТФ. В частности, в растительных клетках это инозиндифосфат и инозинтрифосфат. У низкоорганизованных животных организмов аккумулятором энергии может быть креатинфосфат (у хордовых и иглокожих) и аргининфосфат (у кольчатых червей, членистоногих, моллюсков).

Этапы энергетического обмена.

Энергетический обмен у большинства организмов, живущих в кислородной среде (аэробов), проходит в три этапа: подготовительный, бескислородный и кислородный. У анаэробов, или у аэробов при недостатке кислорода, протекают лишь два первых этапа.

Первый этап: подготовительный. Осуществляется в основном вне клеток под действием ферментов, секретируемых в полость пищеварительного тракта или внутри вторичных лизосом. На этом этапе крупные молекулы полимеров распадаются на мономеры: белки – на аминокислоты, полисахариды – на простые сахара, жиры - на жирные кислоты и глицерол. При этом выделяется небольшое количество энергии, которая рассеивается в виде теплоты.

Второй этап: бескислородный (неполного окисления). Образовавшиеся в процессе пищеварения небольшие молекулы поступают в цитоплазму клеток и подвергаются дальнейшему расщеплению, которое может проходить и без присутствия кислорода. Поскольку главным источником энергии является глюкоза, то рассмотрим течение процессов неполного окисления на примере гликолиза.

Гликолиз – многоступенчатый ферментативный процесс превращения глюкозы в две трехуглеродные молекулы пировиноградной кислоты (пирувата, ПВК):

С6Н12О6 + 2АДФ + 2Н3РО4 + 2НАД+ = 2С3Н4О3 + 2АТФ + 2Н2О + 2НАД.Н.

В результате гликолиза 1 молекулы глюкозы образуются: 2 ПВК, 2 АТФ, 2 Н2О и атомы водорода, которые запасаются клеткой в форме НАД.Н в составе специфического переносчика – никотинамидадениндинуклеотида. В ходе реакции гликолиза выделяется 200 кДж энергии: 60% рассеивается в виде тепла, 40% (80кДж) используется на синтез 2АТФ.

В клетках у организмов, не использующих молекулярного кислорода или живущих в его отсутствие, а также в тканях многоклеточных организмов, способных работать в анаэробных условиях (мыщцы) во время сильных нагрузок гликолиз может быть основным источником АТФ. В этих условиях молекулы пировиноградной кислоты превращаются либо в молочную кислоту, либо в этанол и СО2, в ацетон, масляную и янтарную кислоты у разных микроорганизмов и т. д.

Образование АТФ в реакциях гликолиза относительно неэффективно, так как его конечные продукты – относительно крупные молекулы, заключающие в себе большое количество химической энергии. Поэтому второй этап энергетического обмена называют неполным. Этот этап также называют еще брожением.

Брожение – процесс извлечения энергии из органических соединений в отсутствие кислорода; широко распространен в природе. Большинство природных соединений, состоящих из углерода, водорода, кислорода и (или) азота, в анаэробных условия. Поддается сбраживанию. К таким соединениям относятся полисахариды, гексозы, пентозы, триозы, многоатомные спирты, органические кислоты, аминокислоты, пурины и пиримидины. Продуктами сбраживания углеводов являются масляная кислота, ацетон, бутанол, пропанол и др. Полисахарид целлюлоза в результате обработки микроорганизмами превращается в этиловый спирт, уксусную, муравьиную и молочную кислоты, молекулярный водород и углекислый газ. Бактерии, обитающие в рубце жвачных животных (109-1010 бактериальных клеток в 1 мл рубцовой жидкости), расщепляют целлюлозу, содержащуюся в растительных кормах, до легкоусвояемых органических соединений – органических кислот и спиртов.

Однако есть вещества, не способные сбраживаться в анаэробных условиях. Это алифатические и ароматические углеводороды, растительные пигменты – каратиноиды и некоторые другие соединения. В аэробных условиях эти вещества полностью окисляются, но в отсутствие кислорода они очень стабильны. Благодаря этой стабильности углеводороды долго сохраняются в нефтяных месторождениях.

У дрожжей и в клетках растений при недостатке кислорода проходит спиртовое брожение – ПВК восстанавливается до этилового спирта.

В мышечных клетках при недостатке кислорода и у молочнокислых бактерий протекает молочнокислое брожение – ПВК восстанавливается до молочной кислоты.

Третий этап: кислородный (полное окисление). Этот этап нуждается в присутствии молекулярного кислорода и называется ещё дыханием. Развитие клеточного дыхания у аэробных микроорганизмов и в клетках эукариот стало возможным лишь после того, как в результате фотосинтеза в атмосфере Земли появился молекулярный кислород. Добавление к катаболическому процессу стадии, осуществляющейся в присутствии кислорода, обеспечивает клетки мощным и эффективным путем извлечения из молекул питательных веществ энергии.

Реакции кислородного расщепления протекают в митохондриях, куда поступают молекулы пировиноградной кислоты.

Аэробное дыхание – цепь реакций, протекающих с участием ферментов внутренней мембраны и матрикса митохондрий. ПВК взаимодействует с ферментами матрикса митохондрий и образует: углекислый газ, который выводится из клетки; НАД.Н2, направляющийся к внутренней мембране митохондрии; ацетилкофермент А, который включается в цикл Кребса (цикл трикарбоновых кислот).

Цикл Кребса – это цепь последовательных реакций, протекающих с участием ферментов дегидрогеназ, в ходе которых из одной молекулы ацетилкофермента А образуются две молекулы углекислого газа и четыре пары атомов водорода, передаваемые на молекулы переносчиков – НАД и ФАД (флавинадениндинуклеотид).

Атомы водорода в составе переносчиков транспортируются к внутренней мембране митохондрий, где передаются по цепи встроенных в мембрану переносчиков. При этом протоны водорода накапливаются в межмембранные пространстве, превращая его в протонный резервуар, а електроны передаются на внутреннюю поверхность внутренней мембраны, где соединяются с кислородом:

О2 + е- = О2-

В результате внутренняя мембрана изнутри заряжена положительно, а снаружи = отрицательно. Когда разность потенциалов достигнет критической величины – 200 мВ, протоны водорода силой электрического поля начинают протягиваться через ионные каналы в АТФ-сомах, содержащих АТФ-синтетазы. В этот момент протоны водорода взаимодействуют с кислородом, образуя воду; выделяющаяся энергия идет на синтез АТФ:

1/2О2 + 2Н+ = Н2О; АДФ + Н3РО4 = АТФ + Н2О.

Всего же в дыхательной цепи: 12Н2 +6О2 = 12Н2О + 34АТФ.

Данный процесс сопровождается выделением 2600 кДж энергии, из которых 144- кДж идет на синтез 36 молекул АТФ.

Уравнение кислородного этапа:

3Н6О3 + 6О2 + 36 Н3РО4 + 36 АДФ = 36 АТФ + 6СО2 + 42Н2О.

Суммарное уравнение гликолиза и дыхания:

С6Н12О6 + 38АДФ + 38 Н3РО4 + :О2 = 38АТФ + 6СО2 + 44Н2О.

Т. е., при расщеплении одной молекулы глюкозы высвобождается 38 молекул АТФ. Расход энергии – 1520 кДж, или 55%, остальные 45: рассеиваются в виде тепла.

Аналогичным образом в энергетический обмен могут включаться аминокислоты и жирные кислоты; при их расщеплении кроме воды и углекислого газа образуются азотсодержащие соединения (аммиак, мочевина), выводящиеся через выделительную систему (почки, кожа).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]