
- •4 По. Излучение гравитационных волн .......... . 450
- •Глава I
- •§ 1. Скорость распространения взаимодействий
- •§ 2. Интервал
- •§ 3. Собственное время
- •§ 4. Преобразование Лоренца
- •§ 5. Преобразование скорости
- •§ 6. Четырехмерные векторы
- •1. Найти закон преобразования компонент симметричного 4-тензора л'* при преобразовании Лоренца (6,1).
- •2. То же для антисимметричного тензора л'*.
- •§ 7. Четырехмерная скорость
- •Глава II
- •§ 8, Принцип наименьшего действия
- •§ 9. Энергия и импульс
- •1) Таковы световые кванты — фотоны, а также, возможно, нейтрино.
- •§ 10] Преобразование функции распределения 49
- •§ 10. Преобразование функции распределения
- •1. Частица, движущаяся со скоростью V, распадается «на лету» на две частицы. Определить связь между углами вылета последних и их энергиями.
- •2. Найти распределение раеладных частиц по энергиям в л-системе.
- •3. Определить интервал значений, которые может принимать в л-си-стеме угол между двумя распадными частицами (угол разлета) при распаде на две одинаковые частицы.
- •4. Найти угловое распределение в л-системе для распадных частиц с массой, равной нулю.
- •4Я(1 — Ксозв)2 '
- •5. Найти, распределение по углам разлета в л-системе при распаде на две частицы с массами, равными нулю.
- •6. Определить наибольшую энергию, которую может унести одна из распадных частиц при распаде неподвижной частицы с массой м на три частицы mi, тг, т3.
- •§ 12. Инвариантное сечение
- •§ 13. Упругие столкновения частиц
- •§ 14. Момент импульса
- •Глава III
- •§ 15. Элементарные частицы в теории относительности
- •§ 16. Четырехмерный потенциал поля
- •§ 17. Уравнения движения заряда в поле
- •§ 18. Калибровочная инвариантность
- •§ 19. Постоянное электромагнитное поле
- •§ 21. Движение в постоянном однородном магнитном поле
- •§ 22. Движение заряда в постоянных однородных электрическом и магнитном полях
- •1. Определить релятивистское движение заряда в параллельных однородных электрическом и магнитном полях.
- •2. Определить релятивистское движение заряда во взаимно перпендикулярных и равных по величине электрическом и магнитном полях1).
- •3. Определить скорость дрейфа ведущего центра орбиты нерелятивистской заряженной частицы в квазиоднородном постоянном магнитном поле (я. Alfven, 1940).
- •§ 23. Тензор электромагнитного поля
- •§ 24. Преобразование Лоренца для поля
- •5 25] Инварианты поля 91
- •§ 25. Инварианты поля
- •Глава IV
- •§ 26. Первая пара уравнений Максвелла
- •1) Уравнения Максвелла — основные уравнения электродинамики — была впервые сформулированы Дж, Максвеллом в 1860-х годах.
- •§ 27. Действие для электромагнитного поля
- •8 28] Четырехмерный вектор тока 101
- •§ 29. Уравнение непрерывности
- •§ 30. Вторая пара уравнений Максвелла
- •§ 31. Плотность и поток анергии
- •§ 32. Тензор энергии-импульса
- •§ 33. Тензор энергии-импульса электромагнитного поля
- •Д (dAtfdx*) 4я '
- •§ 35. Тензор энергии-импульса макроскопических тел
- •Глава V
- •§ 36. Закон Кулона
- •§ 37. Электростатическая энергия зарядов
- •§ 38. Поле равномерно движущегося заряда
- •5 88] Поле равномерно движущегося заряда 129
- •§ 39] Движение в кулонов ом поле 131
- •2. Определить эффективное сечение рассеяния на малые углы при рас* сеянии частиц кулоновым полем.
- •§ 40. Дипольный момент
- •5 4!) Муяьтипьльные моменты |35
- •§ 41. Мультипольные моменты
- •2) В соответствии с определением, принятым в квантовой механике.
- •§ 42. Система зарядов во внешнем поле
- •§ 43. Постоянное магнитное поле
- •§ 44. Магнитный момент»
- •§ 45. Теорема Лармора
- •Глава VI
- •§ 46. Волновое уравнение
- •§ 47. Плоские волны
- •1. Определить силу, действующую на стенку, от которой отражается [(с коэффициентом отражения r) падающая на нее плоская электромагнит- ная волна.
- •2. Методом Гамильтона — Якоби определить движение заряда в поле плоской электромагнитной волны.
- •§ 48. Монохроматическая плоская волна
- •1. Определить направление и величину осей эллипса поляризации по комплексной амплитуде е0.
- •2. Определить движение заряда в поле плоской -монохроматической линейно поляризованной волны.
- •3. Определить движение заряда в поле поляризованной по кругу волны.
- •§ 49. Спектральное разложение
- •§ 50. Частично поляризованный свет
- •1. Разложить произвольный частично поляризованный свет на «естественную» и «поляризованную» части.
- •2) Для прямого доказательства замечаем, что поскольку поле волны
- •3. Найти закон преобразования параметров Стокса при повороте осей у, z на угол ф.
- •§ 51. Разложение электростатического поля
- •§ 52. Собственные колебания поля
- •Глава VII
- •§ 53. Геометрическая оптика
- •§ 55. Угловой эйконал
- •§ 56. Тонкие пучки лучей
- •1. Определить фокусное расстояние для отображения с помощью двух аксиально-симметричных оптических систем с совпадающими оптическими осями.
- •2. Определить фокусное расстояние «магнитной линзы» для заряженных частиц, представляющей собой продольное однородное магнитное поле в участке длины I (рис. 8) ').
- •§ 57. Отображение широкими пучками лучей
- •§ 58. Пределы геометрической оптики
- •§ 59. Дифракция
- •§ 59] Дифракция "j97
- •§ 60. Дифракция Френеля
- •§ 60] Дифракция френеля jq3
- •§ 61. Дифракция Фраунгофера
- •1. Определить дифракцию Фраунгофера при нормальном падении плоской волны на бесконечную щель (ширины 2а) с параллельными краями, прорезанную в непрозрачном экране.
- •Глава VIII
- •§ 62. Запаздывающие потенциалы
- •§ 63. Потенциалы Лиенара — Вихерта
- •§ 64. Спектральное разложение запаздывающих потенциалов
- •§ 65. Функция Лагранжа с точностью до членов второго порядка
- •1. Определить (с точностью до членов второго порядка) центр инерции системы взаимодействующих частиц.
- •2. Написать функцию Гамильтона во втором приближении для системы из двух частиц, исключив из нее движение системы как целого.
- •Глава IX
- •§ 66. Поле системы зарядов на далеких расстояниях
- •3) В формуле (63,8) для электрического поля рассматриваемому при- ближению соответствует пренебрежение первым членом по сравнению со вторым,
- •§66} Поле системы зарядов на далеких расстояниях
- •§ 67. Дипольное излучение
- •1. Определить излучение диполя d, вращающегося в одной плоскости с постоянной угловой скоростью q').
- •§ 68. Дипольное излучение при столкновениях
- •2) Фактически обычно речь идет о дипольном моменте двух частиц — рассеиваемой и рассеивающей — относительно их общего центра инерции.
- •§ 69. Тормозное излучение малых частот
- •2) Применимость формул, однако, ограничена квантовым условием малости йш по сравнению с полной кинетической энергией частицы.
- •§ 70. Излучение при кулоновом взаимодействии
- •1, Определить полную среднюю интенсивность излучения при эллиптическом движении двух притягивающихся зарядов.
- •2. Определить полное излучение bJ5 при столкновении двух заряженных частиц.
- •3. Определить полное эффективное излучение при рассеянии потока частиц в кулоновом поле отталкивания. Решение. Искомая величина есть
- •§ 71. Квадрупольное и магнитно-дипольное излучения
- •1. Вычислить полное эффективное излучение при рассеянии потока заряженных частиц одинаковыми с ними частицами.
- •2. Найти силу отдачи, действующую на излучающую систему частиц, со-вершающих стационарное финитное движение.
- •§ 72. Поле излучения на близких расстояниях
- •1. Определить потенциалы поля квадрупольного и магнитно-дипольного излучений на близких расстояниях.
- •Спектральные компоненты потенциалов квадрупольного излучения;
- •2. Найти скорость потери момента импульса системой зарядов при да-польном излучении ею электромагнитных волн.
- •1) Отличное от нуля значение Нп получилось бы лишь при учете членов высшего порядка по а//?0-
- •§ 73. Излучение быстро движущегося заряда
- •2. Определить направления, в которых обращается в нуль интенсивность излучения движущейся частицы.
- •3. Определить интенсивность излучения заряжен- рИс- 15 ной частицей, стационарно движущейся в поле цир-
- •4. То же в поле линейно поляризованной волны.
- •§ 74. Магнито-тормозное излучение
- •1, Определить закон изменения энергии со временем для заряда, движущегося по круговой орбите в постоянном однородном магнитном поле и теряющего энергию путем излучения.
- •2. Найти асимптотическую формулу для спектрального распределения излучения с большими значениями л для частицы, движущейся по окруж- ности со скоростью, не близкой к скорости света.
- •3. Найти поляризацию магнито-тормозного излучения.
- •§ 75. Торможение излучением
- •§ 76. Торможение излучением в релятивистском случае
- •Du1 е cik d2ul е dFik I , е2 с1кв I
- •2Es dFik „ „I 2e* вц r tik _, 2e* IV , д, pkm„ ) ц1
- •1. Определить предельную энергию, которой может обладать частица после пролета через поле магнитного диполя т; вектор ш и направление движения лежат в одной плоскости.
- •2. Написать трехмерное выражение для силы торможения в релятивистском случае.
- •§ 77. Спектральное разложение излучения в ультрарелятивистском случае
- •1. Определить спектральное распределение полной (по всем направлениям) интенсивности излучения при условии (77,2).
- •2. Определить спектральное распределение полной (по всем направлениям) излученной энергии при условии (77,4).
- •§ 78. Рассеяние свободными зарядами
- •4. Определить коэффициент деполяризации рассеянного света при рассея- нии естественного света свободным зарядом.
- •5. Определить частоту (ш') света, рассеянного движущимся зарядом. Решение. В системе координат, где заряд покоится, частота света
- •6. Определить угловое распределение рассеяния линейно поляризованной волны зарядом, движущимся с произвольной скоростью V в направлении распространения волны.
- •7. Определить движение заряда под влиянием средней силы, действующей на него со стороны рассеиваемой им волны.
- •8. Определить сечение рассеяния линейно поляризованной волны осциллятором, с учетом торможения излучением.
- •§ 79. Рассеяние волн с малыми частотами
- •§ 80. Рассеяние волн с большими частотами
- •Глава X
- •§ 81. Гравитационное поле в нерелятивистской механике
- •§ 82. Гравитационное поле в релятивистской механике
- •§ 83. Криволинейные координаты
- •ЕШт _ дх' дхк дх1 дхт prst дх'" дх,г дх'3 дх'*
- •§ 84.. Расстояния и промежутки времени
- •§ 85. Ковариантное дифференцирование
- •§ 86. Связь символов Кристоффеля с метрическим тензором
- •Xikil дх1 Smft1 tl «*т* ы дхС 1 k,u 1 l.Kl
- •§ 86] Символы кристоффеля и метрический тензор 315
- •§ 87. Движение частицы в гравитационном поле
- •§ 88. Постоянное гравитационное поле
- •2. Вывести принцип Ферма для распространения лучей в постоянном гравитационном поле.
- •§ 90. Уравнения электродинамики при наличии гравитационного поля
- •Глава XI
- •§ 91. Тензор кривизны
- •I. Определить относительное 4-ускорение двух частиц, движущихся по бесконечно близким геодезическим мировым линиям.
- •2. Записать уравнения Максвелла в пустоте для 4-потенциала в лорен* цевой калибровке.
- •§ 92. Свойства тензора кривизны
- •Riklm — gtnR"klitf
- •IkUm дх'п дхшдхк дхтдх1 '
- •3) Мы увидим ниже (§ 95), что этим свойством обладает тензор кри- визны для гравитационного поля в пустоте.
- •§ 92] Свойства тензора кривизны 343
- •§ 93. Действие для гравитационного поля
- •1_ Оо ав уй dggy dgpa
- •§ 94. Тензор энергии-импульса
- •§ 95. Уравнения Эйнштейна
- •2) Вариационный принцип для гравитационного поля указан Гильбертом (d, Hilbert, 1915).
- •§ 96. Псевдотензор энергии-импульса гравитационного поля
- •I6jife l а*' a*' j)
- •§ 97. Синхронная система отсчета
- •1. Найти вид разложения решения уравнений гравитационного поля в пустоте вблизи не особой, регулярной точки по времени.
- •3. Найти общий вид бесконечно малого преобразования, не нарушающего синхронности системы отсчета.
- •§ 98. Тетрадное представление уравнений Эйнштейна
- •Глава XII
- •§ 99. Закон Ньютона
- •2) Потенциал поля внутри однородного шара радиуса а:
- •1. Найти инварианты тензора кривизны для метрики Шварцшильда (100,14).
- •3. Определить форму поверхности вращения, на которой геометрия была бы такой же, как на проходящей через начало координат «плоскости» в центрально-симметричном гравитационном поле в пустоте.
- •4. Преобразовать интервал (100,14) к координатам, в которых пространственная метрика имела бы конформно-эвклидов вид (т. Е. Dl2 пропорционально своему евклидову выражению).
- •5. Получить уравнения центрально-симметричного гравитационного поля в веществе в сопутствующей системе отсчета.
- •6, Найти уравнения, определяющие статическое гравитационное поле в пустоте вокруг неподвижного аксиально-симметричного тела (-#. Weyl, 1917),
- •§ 101. Движение в центрально-симметричном гравитационном поле
- •§ 102. Гравитационный коллапс сферического тела
- •V ygoadt /
- •1. Для частицы в поле коллапсара найти радиусы круговых орбит (с. А. Каплан, 1949).
- •2. Для движения в том же поле определить сечение гравитационного захвата падающих на бесконечности: а) нерелятивистских, б) ультрарелятивистских частиц (я. Б. Зельдович, и. Д. Новиков, 1964).
- •§ 103. Гравитационный коллапс пылевидной сферы
- •§ 104. Гравитационный коллапс несферических и вращающихся тел
- •1. Произвести разделение переменных в уравнении Гамильтона — Якоби для частицы, движущейся в поле Керра (в. Carter, 1968). Решение. В уравнении Гамильтона — Якоби
- •§ 105. Гравитационное поле вдали от тел
- •2. Определить систематическое (вековое) смещение орбиты частицы, движущейся в поле центрального тела, связанное с вращением последнего (/. Lense, н. Thirring, 1918).
- •§ 106. Уравнения движения системы тел во втором приближении
- •1. Определить действие для гравитационного поля в ньютоновском приближении.
- •Глава XIII
- •§ 107. Слабые гравитационные волны
- •§ 108. Гравитационные волны в искривленном пространстве-времени
- •§ 109. Сильная гравитационная волна
- •§ 110. Излучение гравитационных волн
- •51»! , Излучение гравитационных волн 45j
- •2. Найти среднюю (по периоду обращения) энергию, излучаемую в виде гравитационных волн системой двух тел, движущихся по эллиптическим орбитам (р. С. Peters, I. Mathews1)).
- •3. Определить среднюю (по времени) скорость потери момента импульса системой стационарно движущихся тел, испускающей гравитационные волны.
- •4. Для системы двух тел, движущихся по эллиптическим орбитам, найти средний теряемый ею в единицу времени момент импульса.
- •Глава XIV
- •§ 111. Изотропное пространство
- •§ 112. Закрытая изотропная модель
- •D0 1 d 8jtfe то
- •§ 113. Открытая изотропная модель
- •§ 114. Красное смещение
- •§ 115. Гравитационная устойчивость изотропного мира
- •§ 116. Однородные пространства
- •§ 117. Плоская анизотропная модель
- •§ 118. Колебательный режим приближения к особой точке
- •§ 119. Особенность по времени в общем космологическом решении уравнений Эйнштейна
- •Реперные 377, 483 Волновая зона 227 Волновой вектор 156, 158
- •Пакет 177
- •Магнитная 189 Лоренцева калибровка 150, 338
- •Сила 73
- •Отдачи при излучении 251
- •Торможения излучением 269, 274, 284, 456
- •Лагранжа 44, 70, 293, 319
- •Эйри 201, 264
§ 84.. Расстояния и промежутки времени
Мы уже говорили, что в общей теории относительности выбор системы отсчета ничем не ограничен; тремя пространственными координатами х\ х2, х3 могут являться любые величины, оаредедякащие расположение тел в пространстве, а временная .координата х° может определяться произвольно идущими часами. Возникает вопрос о том, каким образом по значениям величин х°, х\ х2, хъ можно определить истинные расстояния и промежутки времени.
')
Подразумевается, что элементы dSk'm
и
dflk
построены
по бесконечно малым смещениям dx1,
dx'1,
dx"1
таким
же образом, как они были определены в
§ 6, каков <5ы ни <5ыл геометрический
смысл -координат Тогда остается в
силе и прежний формальный смысл
элементов dSi,
dflk.
В
частности,
по-прежнему, dSa
—
dxf
di? dx3
=
dV.
Мы
сохраним в дальнейшем прежнее
обозначение dV
для
произведения дифференциалов трех
пространственных координат; надо,
однако, помнить, что элемент
геометрического пространственного
объема дается в криволинейных координатах
не самим dV,
а
произведением -\7у
dV
где
у—
определитель прогтрановенного
метрического тензора (который будет
найден в следующем параграфе).
этого рассмотрим два бесконечно близких события, происходящих в одной и той же точке пространства. Тогда интеграл ds* между этими двумя событиями есть не что иное, как cdxt где di — промежуток времени (истинного) между обоими событиями. Полагая dxr = dx2— dxz ===0 в общем выражении ds2 = = gikdxidxh, находим, следовательно,
ds? = c*dTs = g00(dx<i)*,
откуда
rfT=lVgbo<fc°. (84,1)
или для времени между любыми двумя событиями в одной и той же точке пространства
* = tJV^>*. (84,2)
Эти соотношения и определяют промежутки истинного времени (или, как говорят, собственного времени для данной точки пространства) по изменению координаты я* Заметим также, что величина gee, как видно из приведенных формул, положительна:
Ям > &. (84,3)
Необходимо подчеркнуть разницу между смыслом условия "(84,3) и смыслом условия об определенной сигнатуре (знаках главных значений) тензора gik (§ 82). Тензор ga, не удовлетворяющий второму из этих условий, вообще не может соответствовать какому бы то ни было реальному гравитационному полю, т. е. метрике реального пространства-времени. Невыполнение же условия (84,3) означало бы лишь, что соответствующая система отсчета не может быть осуществлена реальными телами; если условие о главных значениях при этом выполняется, то надлежащим преобразованием координат можно добиться того, что goo станет положительным (пример подобной системы представляет собой вращающаяся система координат — см. § 89).
Определим теперь элемент dl пространственного расстояния. В специальной теории относительности можно определять dt как интервал между двумя бесконечно близкими событиями, происходящими в один и тот же момент времени. В общей теории относительности этого, вообще говоря, уже нельзя сделать, т. е. нельзя определить dt, вроете* положив dx6 — 0 п ds. Это связано с тем, что в гравитационном поле собственное время в разных точках пространства различным образом связано с координатой х°.
Для определения dl поступим теперь следующим, образом..
Пусть из некоторой течки В пространства (с координатами X* -f- dxa) отправляется световой сигнал в бесконечно близкую к ней точку А (с координатам» х*}к а затем сразу обратно по тому же пути. Необходимое для этого время (отсчитываемое в одной и той же точке В), умноженное на с, есть, очевидно, удвоенное расстояние между обеими точками.
Напишем интервал, выделив пространственные и временную координаты:
ds2 = g4 dx« dx* + 2g0a dx° dxa + goo (dx0?, (84,4)
где, как обычно, по дважды повторяющимся греческим индексам подразумевается суммирование по значениям 1, 2, 3. Интервал между событиями, являющимися уходом и приходом сигнала из одной точки в другую, равен нулю. Решая уравнение ds2 = 0 относительно dx°, найдем два корня:
dx° <» = — (- gca dxa — V (goagofi — ga$goo) dxa dx$),
, (84,5)
dX° <2> = -X (- g0a dX* + V(^OaeTop ~ gapgoo) dx* dx» ),
отвечающих распространению сигнала в двух направлениях между А и В. Если х° есть момент прибытия сигнала в А, то моменты его отправления из В и обратного возвращения в В будут соответственно х° + dx°w и х° + dx0(-2).
:+rfar°P> ^а схематическом Рис- 18 сплошные прямые — мировые линии, соответствующие заданным координатам ха и х? + dx?-, а штриховые — мировые линии сигналов1). Ясно, что полный промежуток «времени» хчах°с- межДу отправлением и возвращением сиг-
нала в ту же точку равен
в
Рис. 18 dx*W-dx*M = -^^(gUIJg4-g4gM)dx*dxb.
Соответствующий промежуток истинного времени получается отсюда согласно (84,1) умножением на л/goo/c, а расстояние dl между обеими точками — еще умножением на с/2. В результате находим:
dl2 = (-ga, + ^)dx*dxK
Это и есть искомое выражение, определяющее расстояние через элементы пространственных координат. Перепишем его в виде
dt2 = y4dx*dxb, (84,6)
') На рис. 18 предположено, что dx°<s> > 0, dx0<1) < 0, что, однако, необязательно: d*°(1> и dx°v> могут оказаться и одного знака. Тот факт, что в таком случае значение Xй(А) в момент прихода сигнала в А могло бы оказаться меньшим значения хв(В) в момент его выхода из В, не заключает в себе никакого противоречия, поскольку ход часов в различных точках пространства не предполагается каким-либо способом синхронизованным.
где
Yap — gap i" gm
(84,7)
есть трехмерный метрический тензор, определяющий метрику, т. е. геометрические свойства пространства. Соотношениями (84,7) устанавливается связь между метрикой реального пространства и метрикой четырехмерного пространства-времени1).
Необходимо, однако, помнить, что go, зависят, вообще говоря, от х°, так что и пространственная метрика (84,6) меняется со временем. По этой причине не имеет смысла интегрировать dl— такой интеграл зависел бы от того, по какой мировой линии между двумя заданными пространственными точками он брался. Таким образом, в общей теории относительности теряет, вообще говоря, смысл понятие об определенном расстоянии между телами, остающееся в силе лишь в бесконечно малом. Единственным случаем, когда расстояние может быть определено и в конечных областях пространства, являются такие системы отсчета, в которых gik не зависят от времени, и потому
интеграл ^ dl вдоль пространственной кривой имеет определенный смысл.
Полезно заметить, что тензор — Yap является тензором, обратным контравариантному трехмерному тензору g"-^. Действительно, расписав в компонентах равенство glkgki = b\, имеем:
g gpY+g goy^Y'
Лро + Ло=о,
(84,8)
ай
Определив ga0 из второго равенства и подставив в первое, получим:
5е,
Y!
') Квадратичная форма (84,6) должна быть существенно положительной. Для этого ее коэффициенты должны, как известно, удовлетворять усло-
Yu Y12 Y21 Y22
Y.i >0.
Yn Y12 Y13
> 0, Y21 Ym Y23 > 0.
Y31 Y32 Y33
goo got
gio
gll
goo 801 got
<0, gio gn git >0, g<0.
g20 g2l g22
Этим условиям вместе с условием (84,3) должны удовлетворять компоненты метрического тензора во всякой системе отсчета, которая может быть осуществлена с помощью реальных тел.
что и требовалось доказать. Этот результат можно сформулировать иначе, сказав, что величины — ga& составляют контравариантный трехмерный метрический тензор, отвечающий метрике (84,6):
Ya& = _ g«fls (84,9)
Укажем также, что определители gay, составленные соответственно из величин gik и уар> связаны друг с другом простым соотношением:
-* = tf«Y. (84,10)
В ряде дальнейших применений нам будет удобно вводить трехмерный вектор g, ковариантные компоненты которого определяются как
Рассматривая g как вектор в пространстве с метрикой (84,6), мы должны определить его контравариантные компоненты как ga = YaPgp- С помощью (84,9) и второго из равенств (84,8) легко видеть, что
ga^ya% = -g^. (84,12)
Отметим также формулу
gm = j^-go£a, (84,13)
следующую из третьего из равенств (84,8).
Перейдем теперь к определению понятия одновременности в общей теории относительности. Другими словами, выясним вопрос о возможности синхронизации часов, находящихся в разных точках пространства, т. е. приведения в соответствие друг с другом показаний этих часов.
Такая синхронизация должна быть, очевидно, осуществлена с помощью обмена световыми сигналами между обеими точками. Рассмотрим снова процесс распространения сигналов между двумя бёсокнечно близкими точками А и В, изображенный на рис 18. Одновременным с моментом х° в точке А следует считать показание часов в точке В, лежащее посередине между моментами отправления и обратного прибытия сигнала в эту точку, т. е. момент
хо + А*» = х° + 1 (dx* <2> + dx° <»).
Подставляя сюда (84,5), находим разность значений «времени» х° для двух одновременных событий, происходящих в бесконечно близких точках, в виде
Д*° = - Sss^L e g (84,14)
(S00
Это соотношение дает возможность синхронизовать часы в любом бесконечно малом объеме пространства. Продолжая подобную синхронизацию из точки А дальше, можно синхронизовать часы, т. е. определить одновременность событий вдоль любой незамкнутой линии1).
Синхронизация же часов вдоль замкнутого контура оказывается, вообще говоря, невозможной. Действительно, обойдя вдоль контура и вернувшись в исходную точку, мы получили бы для Да-0 отличное от нуля значение. Тем более оказывается невозможной однозначная синхронизация часов во всем пространстве. Исключение составляют лишь такие системы отсчета, в которых все комопненты g0a равны нулю2).
Следует подчеркнуть, что невозможность синхронизации всех часов является свойством именно произвольной системы отсчета, а не пространства-времени как такового. В любом гравитационном поле всегда можно выбрать (и даже бесчисленным числом способов) систему отсчета таким образом, чтобы обратить три величины g0a, тождественно в нуль и, тем самым, сделать возможной полную синхронизацию часов (см. § 97).
Уже в специальной теории относительности течение истинного времени различно для движущихся друг относительно друга часов. В общей же теории относительности истинное время течет различным образом и в разных точках пространства в одной и той же системе отсчета. Это значит, что интервал со5-ственного времени между двумя событиями, происходящими в некоторой точке пространства, и интервал времени между одновременными с ними событиями в другой точке пространства, вообще говоря, отличны друг от друга.