
- •4 По. Излучение гравитационных волн .......... . 450
- •Глава I
- •§ 1. Скорость распространения взаимодействий
- •§ 2. Интервал
- •§ 3. Собственное время
- •§ 4. Преобразование Лоренца
- •§ 5. Преобразование скорости
- •§ 6. Четырехмерные векторы
- •1. Найти закон преобразования компонент симметричного 4-тензора л'* при преобразовании Лоренца (6,1).
- •2. То же для антисимметричного тензора л'*.
- •§ 7. Четырехмерная скорость
- •Глава II
- •§ 8, Принцип наименьшего действия
- •§ 9. Энергия и импульс
- •1) Таковы световые кванты — фотоны, а также, возможно, нейтрино.
- •§ 10] Преобразование функции распределения 49
- •§ 10. Преобразование функции распределения
- •1. Частица, движущаяся со скоростью V, распадается «на лету» на две частицы. Определить связь между углами вылета последних и их энергиями.
- •2. Найти распределение раеладных частиц по энергиям в л-системе.
- •3. Определить интервал значений, которые может принимать в л-си-стеме угол между двумя распадными частицами (угол разлета) при распаде на две одинаковые частицы.
- •4. Найти угловое распределение в л-системе для распадных частиц с массой, равной нулю.
- •4Я(1 — Ксозв)2 '
- •5. Найти, распределение по углам разлета в л-системе при распаде на две частицы с массами, равными нулю.
- •6. Определить наибольшую энергию, которую может унести одна из распадных частиц при распаде неподвижной частицы с массой м на три частицы mi, тг, т3.
- •§ 12. Инвариантное сечение
- •§ 13. Упругие столкновения частиц
- •§ 14. Момент импульса
- •Глава III
- •§ 15. Элементарные частицы в теории относительности
- •§ 16. Четырехмерный потенциал поля
- •§ 17. Уравнения движения заряда в поле
- •§ 18. Калибровочная инвариантность
- •§ 19. Постоянное электромагнитное поле
- •§ 21. Движение в постоянном однородном магнитном поле
- •§ 22. Движение заряда в постоянных однородных электрическом и магнитном полях
- •1. Определить релятивистское движение заряда в параллельных однородных электрическом и магнитном полях.
- •2. Определить релятивистское движение заряда во взаимно перпендикулярных и равных по величине электрическом и магнитном полях1).
- •3. Определить скорость дрейфа ведущего центра орбиты нерелятивистской заряженной частицы в квазиоднородном постоянном магнитном поле (я. Alfven, 1940).
- •§ 23. Тензор электромагнитного поля
- •§ 24. Преобразование Лоренца для поля
- •5 25] Инварианты поля 91
- •§ 25. Инварианты поля
- •Глава IV
- •§ 26. Первая пара уравнений Максвелла
- •1) Уравнения Максвелла — основные уравнения электродинамики — была впервые сформулированы Дж, Максвеллом в 1860-х годах.
- •§ 27. Действие для электромагнитного поля
- •8 28] Четырехмерный вектор тока 101
- •§ 29. Уравнение непрерывности
- •§ 30. Вторая пара уравнений Максвелла
- •§ 31. Плотность и поток анергии
- •§ 32. Тензор энергии-импульса
- •§ 33. Тензор энергии-импульса электромагнитного поля
- •Д (dAtfdx*) 4я '
- •§ 35. Тензор энергии-импульса макроскопических тел
- •Глава V
- •§ 36. Закон Кулона
- •§ 37. Электростатическая энергия зарядов
- •§ 38. Поле равномерно движущегося заряда
- •5 88] Поле равномерно движущегося заряда 129
- •§ 39] Движение в кулонов ом поле 131
- •2. Определить эффективное сечение рассеяния на малые углы при рас* сеянии частиц кулоновым полем.
- •§ 40. Дипольный момент
- •5 4!) Муяьтипьльные моменты |35
- •§ 41. Мультипольные моменты
- •2) В соответствии с определением, принятым в квантовой механике.
- •§ 42. Система зарядов во внешнем поле
- •§ 43. Постоянное магнитное поле
- •§ 44. Магнитный момент»
- •§ 45. Теорема Лармора
- •Глава VI
- •§ 46. Волновое уравнение
- •§ 47. Плоские волны
- •1. Определить силу, действующую на стенку, от которой отражается [(с коэффициентом отражения r) падающая на нее плоская электромагнит- ная волна.
- •2. Методом Гамильтона — Якоби определить движение заряда в поле плоской электромагнитной волны.
- •§ 48. Монохроматическая плоская волна
- •1. Определить направление и величину осей эллипса поляризации по комплексной амплитуде е0.
- •2. Определить движение заряда в поле плоской -монохроматической линейно поляризованной волны.
- •3. Определить движение заряда в поле поляризованной по кругу волны.
- •§ 49. Спектральное разложение
- •§ 50. Частично поляризованный свет
- •1. Разложить произвольный частично поляризованный свет на «естественную» и «поляризованную» части.
- •2) Для прямого доказательства замечаем, что поскольку поле волны
- •3. Найти закон преобразования параметров Стокса при повороте осей у, z на угол ф.
- •§ 51. Разложение электростатического поля
- •§ 52. Собственные колебания поля
- •Глава VII
- •§ 53. Геометрическая оптика
- •§ 55. Угловой эйконал
- •§ 56. Тонкие пучки лучей
- •1. Определить фокусное расстояние для отображения с помощью двух аксиально-симметричных оптических систем с совпадающими оптическими осями.
- •2. Определить фокусное расстояние «магнитной линзы» для заряженных частиц, представляющей собой продольное однородное магнитное поле в участке длины I (рис. 8) ').
- •§ 57. Отображение широкими пучками лучей
- •§ 58. Пределы геометрической оптики
- •§ 59. Дифракция
- •§ 59] Дифракция "j97
- •§ 60. Дифракция Френеля
- •§ 60] Дифракция френеля jq3
- •§ 61. Дифракция Фраунгофера
- •1. Определить дифракцию Фраунгофера при нормальном падении плоской волны на бесконечную щель (ширины 2а) с параллельными краями, прорезанную в непрозрачном экране.
- •Глава VIII
- •§ 62. Запаздывающие потенциалы
- •§ 63. Потенциалы Лиенара — Вихерта
- •§ 64. Спектральное разложение запаздывающих потенциалов
- •§ 65. Функция Лагранжа с точностью до членов второго порядка
- •1. Определить (с точностью до членов второго порядка) центр инерции системы взаимодействующих частиц.
- •2. Написать функцию Гамильтона во втором приближении для системы из двух частиц, исключив из нее движение системы как целого.
- •Глава IX
- •§ 66. Поле системы зарядов на далеких расстояниях
- •3) В формуле (63,8) для электрического поля рассматриваемому при- ближению соответствует пренебрежение первым членом по сравнению со вторым,
- •§66} Поле системы зарядов на далеких расстояниях
- •§ 67. Дипольное излучение
- •1. Определить излучение диполя d, вращающегося в одной плоскости с постоянной угловой скоростью q').
- •§ 68. Дипольное излучение при столкновениях
- •2) Фактически обычно речь идет о дипольном моменте двух частиц — рассеиваемой и рассеивающей — относительно их общего центра инерции.
- •§ 69. Тормозное излучение малых частот
- •2) Применимость формул, однако, ограничена квантовым условием малости йш по сравнению с полной кинетической энергией частицы.
- •§ 70. Излучение при кулоновом взаимодействии
- •1, Определить полную среднюю интенсивность излучения при эллиптическом движении двух притягивающихся зарядов.
- •2. Определить полное излучение bJ5 при столкновении двух заряженных частиц.
- •3. Определить полное эффективное излучение при рассеянии потока частиц в кулоновом поле отталкивания. Решение. Искомая величина есть
- •§ 71. Квадрупольное и магнитно-дипольное излучения
- •1. Вычислить полное эффективное излучение при рассеянии потока заряженных частиц одинаковыми с ними частицами.
- •2. Найти силу отдачи, действующую на излучающую систему частиц, со-вершающих стационарное финитное движение.
- •§ 72. Поле излучения на близких расстояниях
- •1. Определить потенциалы поля квадрупольного и магнитно-дипольного излучений на близких расстояниях.
- •Спектральные компоненты потенциалов квадрупольного излучения;
- •2. Найти скорость потери момента импульса системой зарядов при да-польном излучении ею электромагнитных волн.
- •1) Отличное от нуля значение Нп получилось бы лишь при учете членов высшего порядка по а//?0-
- •§ 73. Излучение быстро движущегося заряда
- •2. Определить направления, в которых обращается в нуль интенсивность излучения движущейся частицы.
- •3. Определить интенсивность излучения заряжен- рИс- 15 ной частицей, стационарно движущейся в поле цир-
- •4. То же в поле линейно поляризованной волны.
- •§ 74. Магнито-тормозное излучение
- •1, Определить закон изменения энергии со временем для заряда, движущегося по круговой орбите в постоянном однородном магнитном поле и теряющего энергию путем излучения.
- •2. Найти асимптотическую формулу для спектрального распределения излучения с большими значениями л для частицы, движущейся по окруж- ности со скоростью, не близкой к скорости света.
- •3. Найти поляризацию магнито-тормозного излучения.
- •§ 75. Торможение излучением
- •§ 76. Торможение излучением в релятивистском случае
- •Du1 е cik d2ul е dFik I , е2 с1кв I
- •2Es dFik „ „I 2e* вц r tik _, 2e* IV , д, pkm„ ) ц1
- •1. Определить предельную энергию, которой может обладать частица после пролета через поле магнитного диполя т; вектор ш и направление движения лежат в одной плоскости.
- •2. Написать трехмерное выражение для силы торможения в релятивистском случае.
- •§ 77. Спектральное разложение излучения в ультрарелятивистском случае
- •1. Определить спектральное распределение полной (по всем направлениям) интенсивности излучения при условии (77,2).
- •2. Определить спектральное распределение полной (по всем направлениям) излученной энергии при условии (77,4).
- •§ 78. Рассеяние свободными зарядами
- •4. Определить коэффициент деполяризации рассеянного света при рассея- нии естественного света свободным зарядом.
- •5. Определить частоту (ш') света, рассеянного движущимся зарядом. Решение. В системе координат, где заряд покоится, частота света
- •6. Определить угловое распределение рассеяния линейно поляризованной волны зарядом, движущимся с произвольной скоростью V в направлении распространения волны.
- •7. Определить движение заряда под влиянием средней силы, действующей на него со стороны рассеиваемой им волны.
- •8. Определить сечение рассеяния линейно поляризованной волны осциллятором, с учетом торможения излучением.
- •§ 79. Рассеяние волн с малыми частотами
- •§ 80. Рассеяние волн с большими частотами
- •Глава X
- •§ 81. Гравитационное поле в нерелятивистской механике
- •§ 82. Гравитационное поле в релятивистской механике
- •§ 83. Криволинейные координаты
- •ЕШт _ дх' дхк дх1 дхт prst дх'" дх,г дх'3 дх'*
- •§ 84.. Расстояния и промежутки времени
- •§ 85. Ковариантное дифференцирование
- •§ 86. Связь символов Кристоффеля с метрическим тензором
- •Xikil дх1 Smft1 tl «*т* ы дхС 1 k,u 1 l.Kl
- •§ 86] Символы кристоффеля и метрический тензор 315
- •§ 87. Движение частицы в гравитационном поле
- •§ 88. Постоянное гравитационное поле
- •2. Вывести принцип Ферма для распространения лучей в постоянном гравитационном поле.
- •§ 90. Уравнения электродинамики при наличии гравитационного поля
- •Глава XI
- •§ 91. Тензор кривизны
- •I. Определить относительное 4-ускорение двух частиц, движущихся по бесконечно близким геодезическим мировым линиям.
- •2. Записать уравнения Максвелла в пустоте для 4-потенциала в лорен* цевой калибровке.
- •§ 92. Свойства тензора кривизны
- •Riklm — gtnR"klitf
- •IkUm дх'п дхшдхк дхтдх1 '
- •3) Мы увидим ниже (§ 95), что этим свойством обладает тензор кри- визны для гравитационного поля в пустоте.
- •§ 92] Свойства тензора кривизны 343
- •§ 93. Действие для гравитационного поля
- •1_ Оо ав уй dggy dgpa
- •§ 94. Тензор энергии-импульса
- •§ 95. Уравнения Эйнштейна
- •2) Вариационный принцип для гравитационного поля указан Гильбертом (d, Hilbert, 1915).
- •§ 96. Псевдотензор энергии-импульса гравитационного поля
- •I6jife l а*' a*' j)
- •§ 97. Синхронная система отсчета
- •1. Найти вид разложения решения уравнений гравитационного поля в пустоте вблизи не особой, регулярной точки по времени.
- •3. Найти общий вид бесконечно малого преобразования, не нарушающего синхронности системы отсчета.
- •§ 98. Тетрадное представление уравнений Эйнштейна
- •Глава XII
- •§ 99. Закон Ньютона
- •2) Потенциал поля внутри однородного шара радиуса а:
- •1. Найти инварианты тензора кривизны для метрики Шварцшильда (100,14).
- •3. Определить форму поверхности вращения, на которой геометрия была бы такой же, как на проходящей через начало координат «плоскости» в центрально-симметричном гравитационном поле в пустоте.
- •4. Преобразовать интервал (100,14) к координатам, в которых пространственная метрика имела бы конформно-эвклидов вид (т. Е. Dl2 пропорционально своему евклидову выражению).
- •5. Получить уравнения центрально-симметричного гравитационного поля в веществе в сопутствующей системе отсчета.
- •6, Найти уравнения, определяющие статическое гравитационное поле в пустоте вокруг неподвижного аксиально-симметричного тела (-#. Weyl, 1917),
- •§ 101. Движение в центрально-симметричном гравитационном поле
- •§ 102. Гравитационный коллапс сферического тела
- •V ygoadt /
- •1. Для частицы в поле коллапсара найти радиусы круговых орбит (с. А. Каплан, 1949).
- •2. Для движения в том же поле определить сечение гравитационного захвата падающих на бесконечности: а) нерелятивистских, б) ультрарелятивистских частиц (я. Б. Зельдович, и. Д. Новиков, 1964).
- •§ 103. Гравитационный коллапс пылевидной сферы
- •§ 104. Гравитационный коллапс несферических и вращающихся тел
- •1. Произвести разделение переменных в уравнении Гамильтона — Якоби для частицы, движущейся в поле Керра (в. Carter, 1968). Решение. В уравнении Гамильтона — Якоби
- •§ 105. Гравитационное поле вдали от тел
- •2. Определить систематическое (вековое) смещение орбиты частицы, движущейся в поле центрального тела, связанное с вращением последнего (/. Lense, н. Thirring, 1918).
- •§ 106. Уравнения движения системы тел во втором приближении
- •1. Определить действие для гравитационного поля в ньютоновском приближении.
- •Глава XIII
- •§ 107. Слабые гравитационные волны
- •§ 108. Гравитационные волны в искривленном пространстве-времени
- •§ 109. Сильная гравитационная волна
- •§ 110. Излучение гравитационных волн
- •51»! , Излучение гравитационных волн 45j
- •2. Найти среднюю (по периоду обращения) энергию, излучаемую в виде гравитационных волн системой двух тел, движущихся по эллиптическим орбитам (р. С. Peters, I. Mathews1)).
- •3. Определить среднюю (по времени) скорость потери момента импульса системой стационарно движущихся тел, испускающей гравитационные волны.
- •4. Для системы двух тел, движущихся по эллиптическим орбитам, найти средний теряемый ею в единицу времени момент импульса.
- •Глава XIV
- •§ 111. Изотропное пространство
- •§ 112. Закрытая изотропная модель
- •D0 1 d 8jtfe то
- •§ 113. Открытая изотропная модель
- •§ 114. Красное смещение
- •§ 115. Гравитационная устойчивость изотропного мира
- •§ 116. Однородные пространства
- •§ 117. Плоская анизотропная модель
- •§ 118. Колебательный режим приближения к особой точке
- •§ 119. Особенность по времени в общем космологическом решении уравнений Эйнштейна
- •Реперные 377, 483 Волновая зона 227 Волновой вектор 156, 158
- •Пакет 177
- •Магнитная 189 Лоренцева калибровка 150, 338
- •Сила 73
- •Отдачи при излучении 251
- •Торможения излучением 269, 274, 284, 456
- •Лагранжа 44, 70, 293, 319
- •Эйри 201, 264
1) Отличное от нуля значение Нп получилось бы лишь при учете членов высшего порядка по а//?0-
En
=
-^5-
nd,
Hn =
0. (2)
Подставив (2) и (67,6) в (1), получимз dt
Наконец, написав подынтегральное выражение в виде е^уП^йуП^А^ и усреднив по направлениям п, найдем окончательно:
Отметим, что для линейного осциллятора (d = d0 cos Ы с вещественной амплитудой do) выражение (3) обращается в нуль: потери момента при излучении не происходит.
§ 73. Излучение быстро движущегося заряда
Рассмотрим теперь заряженную частицу, движущуюся со ско-ростью не малой по сравнению со скоростью ввета.
Формулы § 67, выведенные в предположении v <С с, неприменимы к этому случаю непосредственно. Мы можем, однако, рассматривать частицу в той системе отсчета, в которой она в данный момент покоится; в этой системе отсчета упомянутые формулы, очевидно, применимы (обращаем внимание на то, что это возможно сделать лишь в случае одной движущейся частицы; для нескольких частиц не существует, вообще говоря, системы отсчета, в которой бы все они одновременно покоились).
Таким образом, в указанной системе отсчета частица излучает в течение времени dt энергию
d8 = ~w2dt (73,1)
(согласно формуле (67,9)), где w — ускорение частицы в этой же системе. Полный же излучаемый ею импульс в рассматриваемой системе отсчета равен нулю
dP = 0. (73,2)
Действительно, излучение импульса определяется как интеграл от плотности потока импульса в поле излучения по замкнутой поверхности, охватывающей частицу. Но в силу свойств симметрии дипольного излучения импульсы, уносимые в противоположных направлениях, одинаковы по величине и противоположны по направлению; поэтому указанный интеграл обращается тождественно в нуль.
Для перехода к произвольной системе отсчета перепишем формулы (73,1) и (73,2) в четырехмерном виде. Легко видеть, что «излучение 4-импульса» dPl должно быть записано как
2е8 duk dub , , 2е2 duk dut ,
dpi--^-dT-drdx---bo--dT-4ruds' (73-3)
Действительно, в системе отсчета, в которой частица покоится, пространственные компоненты 4-скорости и' равны нулю, а duk du. w2
—ds~ = —с5-' П0ЭТ0МУ пространственные компоненты dPl
обращаются в нуль, а временная дает равенство (73,1).
Полное излучение 4-импульса за время пролета частицы через данное электромагнитное поле равно интегралу от выражения (73,3), т. е.
, 2е2 Г duh duy ,
*pt = -!ic-)-dT-drdxl- <73'4>
Перепишем эту формулу в другом виде, выразив 4-ускорение du'/ds через тензор внешнего электромагнитного поля с помощью уравнений движения (23,4):
ь. I
ds
Мы получим тогда
ДР'
=
Зт2с5
^{FuiSHF^uJdx'. (73,5)
Временная компонента уравнения (73,4) или (73,5) дает полное излучение энергии AS. Подставляя для четырехмерных величин их выражения через трехмерные величины, получим:
2
г тг—
з
Д*~£г
\
~ Jrrdt (73,6)
(w=v — ускорение частицы), или, через внешние электрическое и магнитное поля:
00 f 1 "12 1 А$ = \ Idt, 1= • (73,7)
-«> С2
Выражения для полного излучения импульса отличаются лишним множителем v под знаком интеграла.
Из формулы (73,7) видно, что при скоростях, близких к скорости света, полное излучение энергии в единицу времени зависит от скорости в основном как (1 — v2/c2)-\ т. е. пропорционально квадрату энергии движущейся частицы. Исключение представляет только движение в электрическом поле парад-лельно направлению поля. В этом случае множитель (1 — v2/c2), стоящий в знаменателе, сокращается с таким же множителем в числителе, и излучение оказывается не зависящим от энергии частицы.
Наконец, остановимся на вопросе об угловом распределении излучения быстро движущейся частицы. Для решения этой задачи удобно воспользоваться лиенар-вихертовским выражением для поля (63,8—9). На больших расстояниях мы должны сохранить в нем только член с более низкой степенью 1/R (второй член в формуле (63,8)). Вводя единичный вектор п в направлении излучения (R = n./?), получим формулы
Н(-тН]
('-■?)'
E = 1W—' =^г-' "-=№. 073,8)
где все величины в правых сторонах равенств берутся в запаздывающий момент времени f = t — R/c.
Интенсивность излучения в телесный угол do равна dl =
E2R2do. Раскрывая квадрат Е2, найдем:
2 (nw) (vw)
(l-£)(nw)-
(73,9)
Если же мы хотим определить угловое распределение полного излучения за все время движения заряда, то надо проинтегрировать интенсивность по времени. При этом следует помнить, что интегрируемое выражение является функцией t'; поэтому надо писать
dt = jLdf = (1 _ JE1) de (73,10)
(см. (63,6)), после чего интегрирование производится непосредственно по dt'. Таким образом, имеем следующее выражение для полного излучения в элемент телесного угла do:
Uf.
»2 I 1 О fn™4 lvr,,\ w2 (' (11W)2
а^=-^ао\\-щ^т
(73,11)
Как видно из (73,9), угловое распределение излучения в общем случае довольно сложно. В ультрарелятивистском случае (1—v/c < 1) оно обладает характерной особенностью, связанной с наличием высоких степеней разности 1—vn/c в знаменателях различных членов этого выражения. Именно, интенсивность велика в узком интервале углов, в котором мала раз-»
S 731 ИЗЛУЧЕНИЕ БЫСТРО ДВИЖУЩЕГОСЯ ЗАРЯДА 259
ность 1 —vn/c. Обозначив посредством 0 малый угол между п и v, имеем:
эта разность мала (~ 1 -—v/c) при 6 ~ У1 — v/c или, что то же,
е~лЛЧ?- (73,12)
Таким образом, ультрарелятивистская частица излучает в основном в направлении своего движения в интервал углов (73,12) вокруг направления скорости.
Укажем также, что при произвольных скорости и ускорении частицы всегда имеются такие два направления, в которых интенсивность излучения обращается в нуль. Это те направления, в которых вектор n — v/c параллелен вектору w и потому поле (73,8) обращается в нуль (см. также задачу 2 в конце параграфа).
Наконец, выпишем более простые формулы, в которые переходит (73,9) в двух частных случаях.
Если скорость и ускорение частицы параллельны, то
[wn]
и интенсивность
dI=!^r J—-v d0- <73'13>
Она, естественно, симметрична вокруг совместного направления v и w и обращается в нуль в направлениях по (0 = 0) и против (0 = я) скорости. В ультрарелятивистском случае интенсивность как функция от 9 имеет резкий двойной максимум в области (73,12) с «провалом» до нуля при 0 = 0.
Если же скорость и ускорение взаимно перпендикулярны, то из (73,9) имеем:
dl
e2w2 I 1
4яс3 |^ j v_
^1 —^j-^ sin2 0 cos2 ф cos8^4 0 "~ y°0S^)6
do, (73,14)
где 0 — по-прежнему угол между п и v, а <p — азимутальный угол вектора п с плоскостью, проходящей через v и w. Эта интенсивность симметрична лишь относительно плоскости vw и обращается в нуль в двух направлениях в этой плоскости, образующих угол 0 = arccos(u/c) со скоростью.
Задачи
1. Определить полное излучение релятивистской частицы с зарядом еи пролетающей на прицельном расстоянии р в кулоновом поле неподвижного центра (потенциал ф = е2/г).
Решение. При пролете через поле релятивистская частица почти не отклоняется1). Поэтому в (73,7) можно считать скорость v постоянной, соответственно чему поле в точке нахождения частицы
е2г
е2г
(р2 + vЧ>)3'2 '
причем х = vt, у = р. Произведя в (73,7) интегрирование по времени, получим:
Д<§Г =
4 2
21е 1е2 4с2 — V3
12т2с3р8о с2 ~ v*