
- •4 По. Излучение гравитационных волн .......... . 450
- •Глава I
- •§ 1. Скорость распространения взаимодействий
- •§ 2. Интервал
- •§ 3. Собственное время
- •§ 4. Преобразование Лоренца
- •§ 5. Преобразование скорости
- •§ 6. Четырехмерные векторы
- •1. Найти закон преобразования компонент симметричного 4-тензора л'* при преобразовании Лоренца (6,1).
- •2. То же для антисимметричного тензора л'*.
- •§ 7. Четырехмерная скорость
- •Глава II
- •§ 8, Принцип наименьшего действия
- •§ 9. Энергия и импульс
- •1) Таковы световые кванты — фотоны, а также, возможно, нейтрино.
- •§ 10] Преобразование функции распределения 49
- •§ 10. Преобразование функции распределения
- •1. Частица, движущаяся со скоростью V, распадается «на лету» на две частицы. Определить связь между углами вылета последних и их энергиями.
- •2. Найти распределение раеладных частиц по энергиям в л-системе.
- •3. Определить интервал значений, которые может принимать в л-си-стеме угол между двумя распадными частицами (угол разлета) при распаде на две одинаковые частицы.
- •4. Найти угловое распределение в л-системе для распадных частиц с массой, равной нулю.
- •4Я(1 — Ксозв)2 '
- •5. Найти, распределение по углам разлета в л-системе при распаде на две частицы с массами, равными нулю.
- •6. Определить наибольшую энергию, которую может унести одна из распадных частиц при распаде неподвижной частицы с массой м на три частицы mi, тг, т3.
- •§ 12. Инвариантное сечение
- •§ 13. Упругие столкновения частиц
- •§ 14. Момент импульса
- •Глава III
- •§ 15. Элементарные частицы в теории относительности
- •§ 16. Четырехмерный потенциал поля
- •§ 17. Уравнения движения заряда в поле
- •§ 18. Калибровочная инвариантность
- •§ 19. Постоянное электромагнитное поле
- •§ 21. Движение в постоянном однородном магнитном поле
- •§ 22. Движение заряда в постоянных однородных электрическом и магнитном полях
- •1. Определить релятивистское движение заряда в параллельных однородных электрическом и магнитном полях.
- •2. Определить релятивистское движение заряда во взаимно перпендикулярных и равных по величине электрическом и магнитном полях1).
- •3. Определить скорость дрейфа ведущего центра орбиты нерелятивистской заряженной частицы в квазиоднородном постоянном магнитном поле (я. Alfven, 1940).
- •§ 23. Тензор электромагнитного поля
- •§ 24. Преобразование Лоренца для поля
- •5 25] Инварианты поля 91
- •§ 25. Инварианты поля
- •Глава IV
- •§ 26. Первая пара уравнений Максвелла
- •1) Уравнения Максвелла — основные уравнения электродинамики — была впервые сформулированы Дж, Максвеллом в 1860-х годах.
- •§ 27. Действие для электромагнитного поля
- •8 28] Четырехмерный вектор тока 101
- •§ 29. Уравнение непрерывности
- •§ 30. Вторая пара уравнений Максвелла
- •§ 31. Плотность и поток анергии
- •§ 32. Тензор энергии-импульса
- •§ 33. Тензор энергии-импульса электромагнитного поля
- •Д (dAtfdx*) 4я '
- •§ 35. Тензор энергии-импульса макроскопических тел
- •Глава V
- •§ 36. Закон Кулона
- •§ 37. Электростатическая энергия зарядов
- •§ 38. Поле равномерно движущегося заряда
- •5 88] Поле равномерно движущегося заряда 129
- •§ 39] Движение в кулонов ом поле 131
- •2. Определить эффективное сечение рассеяния на малые углы при рас* сеянии частиц кулоновым полем.
- •§ 40. Дипольный момент
- •5 4!) Муяьтипьльные моменты |35
- •§ 41. Мультипольные моменты
- •2) В соответствии с определением, принятым в квантовой механике.
- •§ 42. Система зарядов во внешнем поле
- •§ 43. Постоянное магнитное поле
- •§ 44. Магнитный момент»
- •§ 45. Теорема Лармора
- •Глава VI
- •§ 46. Волновое уравнение
- •§ 47. Плоские волны
- •1. Определить силу, действующую на стенку, от которой отражается [(с коэффициентом отражения r) падающая на нее плоская электромагнит- ная волна.
- •2. Методом Гамильтона — Якоби определить движение заряда в поле плоской электромагнитной волны.
- •§ 48. Монохроматическая плоская волна
- •1. Определить направление и величину осей эллипса поляризации по комплексной амплитуде е0.
- •2. Определить движение заряда в поле плоской -монохроматической линейно поляризованной волны.
- •3. Определить движение заряда в поле поляризованной по кругу волны.
- •§ 49. Спектральное разложение
- •§ 50. Частично поляризованный свет
- •1. Разложить произвольный частично поляризованный свет на «естественную» и «поляризованную» части.
- •2) Для прямого доказательства замечаем, что поскольку поле волны
- •3. Найти закон преобразования параметров Стокса при повороте осей у, z на угол ф.
- •§ 51. Разложение электростатического поля
- •§ 52. Собственные колебания поля
- •Глава VII
- •§ 53. Геометрическая оптика
- •§ 55. Угловой эйконал
- •§ 56. Тонкие пучки лучей
- •1. Определить фокусное расстояние для отображения с помощью двух аксиально-симметричных оптических систем с совпадающими оптическими осями.
- •2. Определить фокусное расстояние «магнитной линзы» для заряженных частиц, представляющей собой продольное однородное магнитное поле в участке длины I (рис. 8) ').
- •§ 57. Отображение широкими пучками лучей
- •§ 58. Пределы геометрической оптики
- •§ 59. Дифракция
- •§ 59] Дифракция "j97
- •§ 60. Дифракция Френеля
- •§ 60] Дифракция френеля jq3
- •§ 61. Дифракция Фраунгофера
- •1. Определить дифракцию Фраунгофера при нормальном падении плоской волны на бесконечную щель (ширины 2а) с параллельными краями, прорезанную в непрозрачном экране.
- •Глава VIII
- •§ 62. Запаздывающие потенциалы
- •§ 63. Потенциалы Лиенара — Вихерта
- •§ 64. Спектральное разложение запаздывающих потенциалов
- •§ 65. Функция Лагранжа с точностью до членов второго порядка
- •1. Определить (с точностью до членов второго порядка) центр инерции системы взаимодействующих частиц.
- •2. Написать функцию Гамильтона во втором приближении для системы из двух частиц, исключив из нее движение системы как целого.
- •Глава IX
- •§ 66. Поле системы зарядов на далеких расстояниях
- •3) В формуле (63,8) для электрического поля рассматриваемому при- ближению соответствует пренебрежение первым членом по сравнению со вторым,
- •§66} Поле системы зарядов на далеких расстояниях
- •§ 67. Дипольное излучение
- •1. Определить излучение диполя d, вращающегося в одной плоскости с постоянной угловой скоростью q').
- •§ 68. Дипольное излучение при столкновениях
- •2) Фактически обычно речь идет о дипольном моменте двух частиц — рассеиваемой и рассеивающей — относительно их общего центра инерции.
- •§ 69. Тормозное излучение малых частот
- •2) Применимость формул, однако, ограничена квантовым условием малости йш по сравнению с полной кинетической энергией частицы.
- •§ 70. Излучение при кулоновом взаимодействии
- •1, Определить полную среднюю интенсивность излучения при эллиптическом движении двух притягивающихся зарядов.
- •2. Определить полное излучение bJ5 при столкновении двух заряженных частиц.
- •3. Определить полное эффективное излучение при рассеянии потока частиц в кулоновом поле отталкивания. Решение. Искомая величина есть
- •§ 71. Квадрупольное и магнитно-дипольное излучения
- •1. Вычислить полное эффективное излучение при рассеянии потока заряженных частиц одинаковыми с ними частицами.
- •2. Найти силу отдачи, действующую на излучающую систему частиц, со-вершающих стационарное финитное движение.
- •§ 72. Поле излучения на близких расстояниях
- •1. Определить потенциалы поля квадрупольного и магнитно-дипольного излучений на близких расстояниях.
- •Спектральные компоненты потенциалов квадрупольного излучения;
- •2. Найти скорость потери момента импульса системой зарядов при да-польном излучении ею электромагнитных волн.
- •1) Отличное от нуля значение Нп получилось бы лишь при учете членов высшего порядка по а//?0-
- •§ 73. Излучение быстро движущегося заряда
- •2. Определить направления, в которых обращается в нуль интенсивность излучения движущейся частицы.
- •3. Определить интенсивность излучения заряжен- рИс- 15 ной частицей, стационарно движущейся в поле цир-
- •4. То же в поле линейно поляризованной волны.
- •§ 74. Магнито-тормозное излучение
- •1, Определить закон изменения энергии со временем для заряда, движущегося по круговой орбите в постоянном однородном магнитном поле и теряющего энергию путем излучения.
- •2. Найти асимптотическую формулу для спектрального распределения излучения с большими значениями л для частицы, движущейся по окруж- ности со скоростью, не близкой к скорости света.
- •3. Найти поляризацию магнито-тормозного излучения.
- •§ 75. Торможение излучением
- •§ 76. Торможение излучением в релятивистском случае
- •Du1 е cik d2ul е dFik I , е2 с1кв I
- •2Es dFik „ „I 2e* вц r tik _, 2e* IV , д, pkm„ ) ц1
- •1. Определить предельную энергию, которой может обладать частица после пролета через поле магнитного диполя т; вектор ш и направление движения лежат в одной плоскости.
- •2. Написать трехмерное выражение для силы торможения в релятивистском случае.
- •§ 77. Спектральное разложение излучения в ультрарелятивистском случае
- •1. Определить спектральное распределение полной (по всем направлениям) интенсивности излучения при условии (77,2).
- •2. Определить спектральное распределение полной (по всем направлениям) излученной энергии при условии (77,4).
- •§ 78. Рассеяние свободными зарядами
- •4. Определить коэффициент деполяризации рассеянного света при рассея- нии естественного света свободным зарядом.
- •5. Определить частоту (ш') света, рассеянного движущимся зарядом. Решение. В системе координат, где заряд покоится, частота света
- •6. Определить угловое распределение рассеяния линейно поляризованной волны зарядом, движущимся с произвольной скоростью V в направлении распространения волны.
- •7. Определить движение заряда под влиянием средней силы, действующей на него со стороны рассеиваемой им волны.
- •8. Определить сечение рассеяния линейно поляризованной волны осциллятором, с учетом торможения излучением.
- •§ 79. Рассеяние волн с малыми частотами
- •§ 80. Рассеяние волн с большими частотами
- •Глава X
- •§ 81. Гравитационное поле в нерелятивистской механике
- •§ 82. Гравитационное поле в релятивистской механике
- •§ 83. Криволинейные координаты
- •ЕШт _ дх' дхк дх1 дхт prst дх'" дх,г дх'3 дх'*
- •§ 84.. Расстояния и промежутки времени
- •§ 85. Ковариантное дифференцирование
- •§ 86. Связь символов Кристоффеля с метрическим тензором
- •Xikil дх1 Smft1 tl «*т* ы дхС 1 k,u 1 l.Kl
- •§ 86] Символы кристоффеля и метрический тензор 315
- •§ 87. Движение частицы в гравитационном поле
- •§ 88. Постоянное гравитационное поле
- •2. Вывести принцип Ферма для распространения лучей в постоянном гравитационном поле.
- •§ 90. Уравнения электродинамики при наличии гравитационного поля
- •Глава XI
- •§ 91. Тензор кривизны
- •I. Определить относительное 4-ускорение двух частиц, движущихся по бесконечно близким геодезическим мировым линиям.
- •2. Записать уравнения Максвелла в пустоте для 4-потенциала в лорен* цевой калибровке.
- •§ 92. Свойства тензора кривизны
- •Riklm — gtnR"klitf
- •IkUm дх'п дхшдхк дхтдх1 '
- •3) Мы увидим ниже (§ 95), что этим свойством обладает тензор кри- визны для гравитационного поля в пустоте.
- •§ 92] Свойства тензора кривизны 343
- •§ 93. Действие для гравитационного поля
- •1_ Оо ав уй dggy dgpa
- •§ 94. Тензор энергии-импульса
- •§ 95. Уравнения Эйнштейна
- •2) Вариационный принцип для гравитационного поля указан Гильбертом (d, Hilbert, 1915).
- •§ 96. Псевдотензор энергии-импульса гравитационного поля
- •I6jife l а*' a*' j)
- •§ 97. Синхронная система отсчета
- •1. Найти вид разложения решения уравнений гравитационного поля в пустоте вблизи не особой, регулярной точки по времени.
- •3. Найти общий вид бесконечно малого преобразования, не нарушающего синхронности системы отсчета.
- •§ 98. Тетрадное представление уравнений Эйнштейна
- •Глава XII
- •§ 99. Закон Ньютона
- •2) Потенциал поля внутри однородного шара радиуса а:
- •1. Найти инварианты тензора кривизны для метрики Шварцшильда (100,14).
- •3. Определить форму поверхности вращения, на которой геометрия была бы такой же, как на проходящей через начало координат «плоскости» в центрально-симметричном гравитационном поле в пустоте.
- •4. Преобразовать интервал (100,14) к координатам, в которых пространственная метрика имела бы конформно-эвклидов вид (т. Е. Dl2 пропорционально своему евклидову выражению).
- •5. Получить уравнения центрально-симметричного гравитационного поля в веществе в сопутствующей системе отсчета.
- •6, Найти уравнения, определяющие статическое гравитационное поле в пустоте вокруг неподвижного аксиально-симметричного тела (-#. Weyl, 1917),
- •§ 101. Движение в центрально-симметричном гравитационном поле
- •§ 102. Гравитационный коллапс сферического тела
- •V ygoadt /
- •1. Для частицы в поле коллапсара найти радиусы круговых орбит (с. А. Каплан, 1949).
- •2. Для движения в том же поле определить сечение гравитационного захвата падающих на бесконечности: а) нерелятивистских, б) ультрарелятивистских частиц (я. Б. Зельдович, и. Д. Новиков, 1964).
- •§ 103. Гравитационный коллапс пылевидной сферы
- •§ 104. Гравитационный коллапс несферических и вращающихся тел
- •1. Произвести разделение переменных в уравнении Гамильтона — Якоби для частицы, движущейся в поле Керра (в. Carter, 1968). Решение. В уравнении Гамильтона — Якоби
- •§ 105. Гравитационное поле вдали от тел
- •2. Определить систематическое (вековое) смещение орбиты частицы, движущейся в поле центрального тела, связанное с вращением последнего (/. Lense, н. Thirring, 1918).
- •§ 106. Уравнения движения системы тел во втором приближении
- •1. Определить действие для гравитационного поля в ньютоновском приближении.
- •Глава XIII
- •§ 107. Слабые гравитационные волны
- •§ 108. Гравитационные волны в искривленном пространстве-времени
- •§ 109. Сильная гравитационная волна
- •§ 110. Излучение гравитационных волн
- •51»! , Излучение гравитационных волн 45j
- •2. Найти среднюю (по периоду обращения) энергию, излучаемую в виде гравитационных волн системой двух тел, движущихся по эллиптическим орбитам (р. С. Peters, I. Mathews1)).
- •3. Определить среднюю (по времени) скорость потери момента импульса системой стационарно движущихся тел, испускающей гравитационные волны.
- •4. Для системы двух тел, движущихся по эллиптическим орбитам, найти средний теряемый ею в единицу времени момент импульса.
- •Глава XIV
- •§ 111. Изотропное пространство
- •§ 112. Закрытая изотропная модель
- •D0 1 d 8jtfe то
- •§ 113. Открытая изотропная модель
- •§ 114. Красное смещение
- •§ 115. Гравитационная устойчивость изотропного мира
- •§ 116. Однородные пространства
- •§ 117. Плоская анизотропная модель
- •§ 118. Колебательный режим приближения к особой точке
- •§ 119. Особенность по времени в общем космологическом решении уравнений Эйнштейна
- •Реперные 377, 483 Волновая зона 227 Волновой вектор 156, 158
- •Пакет 177
- •Магнитная 189 Лоренцева калибровка 150, 338
- •Сила 73
- •Отдачи при излучении 251
- •Торможения излучением 269, 274, 284, 456
- •Лагранжа 44, 70, 293, 319
- •Эйри 201, 264
§ 65. Функция Лагранжа с точностью до членов второго порядка
В обычной классической механике систему .взаимодействующих друг с другом частиц можно описывать с помощью, функции Лагранжа, зависящей только от координат и скоростей этих частиц (в один и тот же момент времени). Возможность этого в конечном итоге обусловлена тем, что в механике скорость распространения взаимодействий предполагается бесконечной.
Мы уже знаем, что благодаря конечной скорости распространения взаимодействий поле надо рассматривать как самостоятельную систему с собственными «степенями свободы». Поэтому если мы имеем систему взаимодействующих частиц (зарядов), то для ее описания мы должны рассматривать систему, состоящую из этих частиц и поля. В связи с этим при учете конечной скорости распространения взаимодействий невозможно строгое описание системы взаимодействующих частиц с помощью функции Лагранжа, зависящей только от координат и скоростей частиц и не содержащей никаких величин, связанных с собственными «степенями свободы» поля.
Однако если скорости v всех частиц малы по сравнению со скоростью света, то систему зарядов можно описывать некоторой приближенной функцией Лагранжа. При этом оказывается возможным ввести функцию Лагранжа, описывающую систему не только при пренебрежении всеми степенями v/c (классическая функция Лагранжа), но и с точностью до величин порядка v2/c2. Последнее обстоятельство связано с тем, что излучение электромагнитных волн движущимися зарядами (и, тем самым, возникновение «самостоятельного» поля) появляется лишь в третьем приближении по v/c (см. ниже, § 67)').
Предварительно заметим, что в нулевом приближении, т. е. при полном пренебрежении запаздыванием потенциалов, функция Лагранжа для системы зарядов имеет вид
а а>Ь аЬ
'(суммирование производится по зарядам, входящим в состав системы). Второй член есть потенциальная энергия взаимодействия, какой она была бы для неподвижных зарядов.
Для получения следующего приближения поступим следующим образом. Функция Лагранжа для заряда еа, находящегося
') Для системы, состоящей из частиц, у которых отношения зарядов к массам одинаковы, появление излучения отодвигается до пятого приближения по р/с; в таком случае существует функция Лагранжа и с точностью до членов порядка (о/с)4. (См. Barker В. М., O'Connel R. F. — Canad. J. Phys., 58, 1659 (1980).
во внешнем поле, есть
La = ~ тас2 д/1 —-
Выбрав какой-либо один из зарядов системы, мы определим потенциалы поля, создаваемого всеми остальными зарядами в точке, где находится первый, и выразим их через координаты и скорости зарядов, создающих это поле (как раз это можно сделать только приближенно: <р — с точностью до членов порядка v^fc2, а А — до членов порядка v/c). Подставляя полученные таким образом выражения для потенциалов в (65,2), мы получим функцию Лагранжа для одного из зарядов системы (при данном движении остальных). Отсюда уже без труда можно найти L для всей системы.
Будем исходить из выражений для запаздывающих потенциалов:
Если скорости всех зарядов малы по сравнению со скоростью света, то распределение зарядов не успевает сильно измениться за время R/c. Поэтому мы можем разложить Р*_^е и 1,^ще в ряд по степеням R/c. Для скалярного потенциала находим, таким образом, с точностью до членов второго порядка:
'{р без индексов есть р в момент времени f; знаки дифференцирования по времени могут, очевидно, быть вынесены из-под
знака интеграла). Но есть постоянный полный заряд си-
стемы. Поэтому второй член в полученном выражении равен нулю, так что
^S^+^W^. <б5-з>
Аналогично можно поступить с А. Но выражение для векторного потенциала через плотность тока содержит уже само во себе 1/с, а при подстановке в функцию Лагранжа умножается еще раз на 1/с. Поскольку мы ищем функцию Лагранжа только с точностью до членов второго порядка, то в разложении 5А достаточно ограничиться только первым членом, т. е.
A = -HlTdF (65'4)
[мы подставили j = pv).
Предположим сначала, что поле создается всего одним точечным зарядом е. Тогда имеем из (65,3—4):
где R— расстояние от заряда.
Выберем вместо ф и А другие потенциалы ф' и А', т. е. произведем калибровочное преобразование (см. § 18):
f'^-T-f • A' = A + grad/,
причем в качестве f выберем функцию
f е dR ' 2с dt "
Тогда мы получим1):
ф R ' А cR + 2с v dt '
Для вычисления А' заметим, что V 4^- = -Jj- VR. Операция V
означает здесь дифференцирование по координатам точки наблюдения, в которой ищется значение А'. Поэтому градиент V/? равен единичному вектору п, направленному от заряда е к точке наблюдения, так что
А=^- + -27П-
Далее пишем:
д fR\ R RR dt \ R ) R R* '
Но производная — R при заданной точке наблюдения есть ско* рость v заряда, а производную R легко определить, дифферент цируя тождество R2 — R2, т. е. написав
RR = W=-Hv.
Таким образом,
— v + n (nv)
• R
Подставляя это в выражение для А', находим окончательноз
ф'=-±,
A^e[vy]. (65,6)
') Эти потенциалы уже не удовлетворяют условию Лоренца (62,1), ж потому и уравнениям (62,3—4),
Если поле создается не одним, а несколькими зарядами, то надо, очевидно, просуммировать эти выражения по всем зарядам.
Подставляя их затем в (65,2), найдем функцию Лагранжа La заряда еа (при заданном движении всех остальных зарядов). При этом нужно первый член в (65,2) тоже разложить по степеням va/c, оставляя члены до второго порядка. Таким образом, мы находим:
, _та°1 , » mav* eb еа w е„
2 "Г 8 с* е° L Т~ + ~2с7 L ттх
Ь аЬ Ь аЬ
X [vQVb + (Vana6) [УьПаь)]
(суммирование производится по всем зарядам, за исключением еа; .Паь — единичный вектор в направлении между еь и еа).
Отсюда уже не представляет труда найти функцию Лагранжа для всей системы. Легко сообразить, что эта функция равна не сумме La для всех зарядов, а имеет вид
/ _ V mj?a л. V V е*еь ,
и— L 2 -Т L 8с2 L /? „ +
а а а>Ь аЬ
+ ]У 4Й~ fV«V» + ^УаПаъ) (\ьПаЬ)]. (65,7) а>Ь а*
Действительно, для каждого из зарядов при заданном движении всех остальных эта функция L переходит в приведенную выше La. Выражение (65,7) есть искомая функция Лагранжа системы зарядов с точностью до членов второго порядка (С. G. Darwin, 1922).
Наконец, определим еще функцию Гамильтона системы зарядов в том же приближении. Это можно было бы сделать по общим правилам нахождения Ж по L; однако проще поступить следующим образом. Второй и четвертый члены в (65,7) представляют собой малую поправку к L(0> (65,1). С другой стороны, из механики известно, что при небольшом изменении L а Ж малые добавки к ним равны по величине и противоположны по знаку (причем изменение L рассматривается при заданных координатах и скоростях, а изменение Ж — при заданных координатах и импульсах; см. I § 40).
Поэтому мы можем сразу написать Ж, вычтя из
р1 , v еаеь
а>Ь аЬ
те же второй и четвертый члены из (65,7), предварительно заменив в них скорости на импульсы с помощью соотношений пер-!
вого приближения \а = Ра/та. Таким образом,
а в а>Ь ао а а
а Ь ab
Задачи