
- •4 По. Излучение гравитационных волн .......... . 450
- •Глава I
- •§ 1. Скорость распространения взаимодействий
- •§ 2. Интервал
- •§ 3. Собственное время
- •§ 4. Преобразование Лоренца
- •§ 5. Преобразование скорости
- •§ 6. Четырехмерные векторы
- •1. Найти закон преобразования компонент симметричного 4-тензора л'* при преобразовании Лоренца (6,1).
- •2. То же для антисимметричного тензора л'*.
- •§ 7. Четырехмерная скорость
- •Глава II
- •§ 8, Принцип наименьшего действия
- •§ 9. Энергия и импульс
- •1) Таковы световые кванты — фотоны, а также, возможно, нейтрино.
- •§ 10] Преобразование функции распределения 49
- •§ 10. Преобразование функции распределения
- •1. Частица, движущаяся со скоростью V, распадается «на лету» на две частицы. Определить связь между углами вылета последних и их энергиями.
- •2. Найти распределение раеладных частиц по энергиям в л-системе.
- •3. Определить интервал значений, которые может принимать в л-си-стеме угол между двумя распадными частицами (угол разлета) при распаде на две одинаковые частицы.
- •4. Найти угловое распределение в л-системе для распадных частиц с массой, равной нулю.
- •4Я(1 — Ксозв)2 '
- •5. Найти, распределение по углам разлета в л-системе при распаде на две частицы с массами, равными нулю.
- •6. Определить наибольшую энергию, которую может унести одна из распадных частиц при распаде неподвижной частицы с массой м на три частицы mi, тг, т3.
- •§ 12. Инвариантное сечение
- •§ 13. Упругие столкновения частиц
- •§ 14. Момент импульса
- •Глава III
- •§ 15. Элементарные частицы в теории относительности
- •§ 16. Четырехмерный потенциал поля
- •§ 17. Уравнения движения заряда в поле
- •§ 18. Калибровочная инвариантность
- •§ 19. Постоянное электромагнитное поле
- •§ 21. Движение в постоянном однородном магнитном поле
- •§ 22. Движение заряда в постоянных однородных электрическом и магнитном полях
- •1. Определить релятивистское движение заряда в параллельных однородных электрическом и магнитном полях.
- •2. Определить релятивистское движение заряда во взаимно перпендикулярных и равных по величине электрическом и магнитном полях1).
- •3. Определить скорость дрейфа ведущего центра орбиты нерелятивистской заряженной частицы в квазиоднородном постоянном магнитном поле (я. Alfven, 1940).
- •§ 23. Тензор электромагнитного поля
- •§ 24. Преобразование Лоренца для поля
- •5 25] Инварианты поля 91
- •§ 25. Инварианты поля
- •Глава IV
- •§ 26. Первая пара уравнений Максвелла
- •1) Уравнения Максвелла — основные уравнения электродинамики — была впервые сформулированы Дж, Максвеллом в 1860-х годах.
- •§ 27. Действие для электромагнитного поля
- •8 28] Четырехмерный вектор тока 101
- •§ 29. Уравнение непрерывности
- •§ 30. Вторая пара уравнений Максвелла
- •§ 31. Плотность и поток анергии
- •§ 32. Тензор энергии-импульса
- •§ 33. Тензор энергии-импульса электромагнитного поля
- •Д (dAtfdx*) 4я '
- •§ 35. Тензор энергии-импульса макроскопических тел
- •Глава V
- •§ 36. Закон Кулона
- •§ 37. Электростатическая энергия зарядов
- •§ 38. Поле равномерно движущегося заряда
- •5 88] Поле равномерно движущегося заряда 129
- •§ 39] Движение в кулонов ом поле 131
- •2. Определить эффективное сечение рассеяния на малые углы при рас* сеянии частиц кулоновым полем.
- •§ 40. Дипольный момент
- •5 4!) Муяьтипьльные моменты |35
- •§ 41. Мультипольные моменты
- •2) В соответствии с определением, принятым в квантовой механике.
- •§ 42. Система зарядов во внешнем поле
- •§ 43. Постоянное магнитное поле
- •§ 44. Магнитный момент»
- •§ 45. Теорема Лармора
- •Глава VI
- •§ 46. Волновое уравнение
- •§ 47. Плоские волны
- •1. Определить силу, действующую на стенку, от которой отражается [(с коэффициентом отражения r) падающая на нее плоская электромагнит- ная волна.
- •2. Методом Гамильтона — Якоби определить движение заряда в поле плоской электромагнитной волны.
- •§ 48. Монохроматическая плоская волна
- •1. Определить направление и величину осей эллипса поляризации по комплексной амплитуде е0.
- •2. Определить движение заряда в поле плоской -монохроматической линейно поляризованной волны.
- •3. Определить движение заряда в поле поляризованной по кругу волны.
- •§ 49. Спектральное разложение
- •§ 50. Частично поляризованный свет
- •1. Разложить произвольный частично поляризованный свет на «естественную» и «поляризованную» части.
- •2) Для прямого доказательства замечаем, что поскольку поле волны
- •3. Найти закон преобразования параметров Стокса при повороте осей у, z на угол ф.
- •§ 51. Разложение электростатического поля
- •§ 52. Собственные колебания поля
- •Глава VII
- •§ 53. Геометрическая оптика
- •§ 55. Угловой эйконал
- •§ 56. Тонкие пучки лучей
- •1. Определить фокусное расстояние для отображения с помощью двух аксиально-симметричных оптических систем с совпадающими оптическими осями.
- •2. Определить фокусное расстояние «магнитной линзы» для заряженных частиц, представляющей собой продольное однородное магнитное поле в участке длины I (рис. 8) ').
- •§ 57. Отображение широкими пучками лучей
- •§ 58. Пределы геометрической оптики
- •§ 59. Дифракция
- •§ 59] Дифракция "j97
- •§ 60. Дифракция Френеля
- •§ 60] Дифракция френеля jq3
- •§ 61. Дифракция Фраунгофера
- •1. Определить дифракцию Фраунгофера при нормальном падении плоской волны на бесконечную щель (ширины 2а) с параллельными краями, прорезанную в непрозрачном экране.
- •Глава VIII
- •§ 62. Запаздывающие потенциалы
- •§ 63. Потенциалы Лиенара — Вихерта
- •§ 64. Спектральное разложение запаздывающих потенциалов
- •§ 65. Функция Лагранжа с точностью до членов второго порядка
- •1. Определить (с точностью до членов второго порядка) центр инерции системы взаимодействующих частиц.
- •2. Написать функцию Гамильтона во втором приближении для системы из двух частиц, исключив из нее движение системы как целого.
- •Глава IX
- •§ 66. Поле системы зарядов на далеких расстояниях
- •3) В формуле (63,8) для электрического поля рассматриваемому при- ближению соответствует пренебрежение первым членом по сравнению со вторым,
- •§66} Поле системы зарядов на далеких расстояниях
- •§ 67. Дипольное излучение
- •1. Определить излучение диполя d, вращающегося в одной плоскости с постоянной угловой скоростью q').
- •§ 68. Дипольное излучение при столкновениях
- •2) Фактически обычно речь идет о дипольном моменте двух частиц — рассеиваемой и рассеивающей — относительно их общего центра инерции.
- •§ 69. Тормозное излучение малых частот
- •2) Применимость формул, однако, ограничена квантовым условием малости йш по сравнению с полной кинетической энергией частицы.
- •§ 70. Излучение при кулоновом взаимодействии
- •1, Определить полную среднюю интенсивность излучения при эллиптическом движении двух притягивающихся зарядов.
- •2. Определить полное излучение bJ5 при столкновении двух заряженных частиц.
- •3. Определить полное эффективное излучение при рассеянии потока частиц в кулоновом поле отталкивания. Решение. Искомая величина есть
- •§ 71. Квадрупольное и магнитно-дипольное излучения
- •1. Вычислить полное эффективное излучение при рассеянии потока заряженных частиц одинаковыми с ними частицами.
- •2. Найти силу отдачи, действующую на излучающую систему частиц, со-вершающих стационарное финитное движение.
- •§ 72. Поле излучения на близких расстояниях
- •1. Определить потенциалы поля квадрупольного и магнитно-дипольного излучений на близких расстояниях.
- •Спектральные компоненты потенциалов квадрупольного излучения;
- •2. Найти скорость потери момента импульса системой зарядов при да-польном излучении ею электромагнитных волн.
- •1) Отличное от нуля значение Нп получилось бы лишь при учете членов высшего порядка по а//?0-
- •§ 73. Излучение быстро движущегося заряда
- •2. Определить направления, в которых обращается в нуль интенсивность излучения движущейся частицы.
- •3. Определить интенсивность излучения заряжен- рИс- 15 ной частицей, стационарно движущейся в поле цир-
- •4. То же в поле линейно поляризованной волны.
- •§ 74. Магнито-тормозное излучение
- •1, Определить закон изменения энергии со временем для заряда, движущегося по круговой орбите в постоянном однородном магнитном поле и теряющего энергию путем излучения.
- •2. Найти асимптотическую формулу для спектрального распределения излучения с большими значениями л для частицы, движущейся по окруж- ности со скоростью, не близкой к скорости света.
- •3. Найти поляризацию магнито-тормозного излучения.
- •§ 75. Торможение излучением
- •§ 76. Торможение излучением в релятивистском случае
- •Du1 е cik d2ul е dFik I , е2 с1кв I
- •2Es dFik „ „I 2e* вц r tik _, 2e* IV , д, pkm„ ) ц1
- •1. Определить предельную энергию, которой может обладать частица после пролета через поле магнитного диполя т; вектор ш и направление движения лежат в одной плоскости.
- •2. Написать трехмерное выражение для силы торможения в релятивистском случае.
- •§ 77. Спектральное разложение излучения в ультрарелятивистском случае
- •1. Определить спектральное распределение полной (по всем направлениям) интенсивности излучения при условии (77,2).
- •2. Определить спектральное распределение полной (по всем направлениям) излученной энергии при условии (77,4).
- •§ 78. Рассеяние свободными зарядами
- •4. Определить коэффициент деполяризации рассеянного света при рассея- нии естественного света свободным зарядом.
- •5. Определить частоту (ш') света, рассеянного движущимся зарядом. Решение. В системе координат, где заряд покоится, частота света
- •6. Определить угловое распределение рассеяния линейно поляризованной волны зарядом, движущимся с произвольной скоростью V в направлении распространения волны.
- •7. Определить движение заряда под влиянием средней силы, действующей на него со стороны рассеиваемой им волны.
- •8. Определить сечение рассеяния линейно поляризованной волны осциллятором, с учетом торможения излучением.
- •§ 79. Рассеяние волн с малыми частотами
- •§ 80. Рассеяние волн с большими частотами
- •Глава X
- •§ 81. Гравитационное поле в нерелятивистской механике
- •§ 82. Гравитационное поле в релятивистской механике
- •§ 83. Криволинейные координаты
- •ЕШт _ дх' дхк дх1 дхт prst дх'" дх,г дх'3 дх'*
- •§ 84.. Расстояния и промежутки времени
- •§ 85. Ковариантное дифференцирование
- •§ 86. Связь символов Кристоффеля с метрическим тензором
- •Xikil дх1 Smft1 tl «*т* ы дхС 1 k,u 1 l.Kl
- •§ 86] Символы кристоффеля и метрический тензор 315
- •§ 87. Движение частицы в гравитационном поле
- •§ 88. Постоянное гравитационное поле
- •2. Вывести принцип Ферма для распространения лучей в постоянном гравитационном поле.
- •§ 90. Уравнения электродинамики при наличии гравитационного поля
- •Глава XI
- •§ 91. Тензор кривизны
- •I. Определить относительное 4-ускорение двух частиц, движущихся по бесконечно близким геодезическим мировым линиям.
- •2. Записать уравнения Максвелла в пустоте для 4-потенциала в лорен* цевой калибровке.
- •§ 92. Свойства тензора кривизны
- •Riklm — gtnR"klitf
- •IkUm дх'п дхшдхк дхтдх1 '
- •3) Мы увидим ниже (§ 95), что этим свойством обладает тензор кри- визны для гравитационного поля в пустоте.
- •§ 92] Свойства тензора кривизны 343
- •§ 93. Действие для гравитационного поля
- •1_ Оо ав уй dggy dgpa
- •§ 94. Тензор энергии-импульса
- •§ 95. Уравнения Эйнштейна
- •2) Вариационный принцип для гравитационного поля указан Гильбертом (d, Hilbert, 1915).
- •§ 96. Псевдотензор энергии-импульса гравитационного поля
- •I6jife l а*' a*' j)
- •§ 97. Синхронная система отсчета
- •1. Найти вид разложения решения уравнений гравитационного поля в пустоте вблизи не особой, регулярной точки по времени.
- •3. Найти общий вид бесконечно малого преобразования, не нарушающего синхронности системы отсчета.
- •§ 98. Тетрадное представление уравнений Эйнштейна
- •Глава XII
- •§ 99. Закон Ньютона
- •2) Потенциал поля внутри однородного шара радиуса а:
- •1. Найти инварианты тензора кривизны для метрики Шварцшильда (100,14).
- •3. Определить форму поверхности вращения, на которой геометрия была бы такой же, как на проходящей через начало координат «плоскости» в центрально-симметричном гравитационном поле в пустоте.
- •4. Преобразовать интервал (100,14) к координатам, в которых пространственная метрика имела бы конформно-эвклидов вид (т. Е. Dl2 пропорционально своему евклидову выражению).
- •5. Получить уравнения центрально-симметричного гравитационного поля в веществе в сопутствующей системе отсчета.
- •6, Найти уравнения, определяющие статическое гравитационное поле в пустоте вокруг неподвижного аксиально-симметричного тела (-#. Weyl, 1917),
- •§ 101. Движение в центрально-симметричном гравитационном поле
- •§ 102. Гравитационный коллапс сферического тела
- •V ygoadt /
- •1. Для частицы в поле коллапсара найти радиусы круговых орбит (с. А. Каплан, 1949).
- •2. Для движения в том же поле определить сечение гравитационного захвата падающих на бесконечности: а) нерелятивистских, б) ультрарелятивистских частиц (я. Б. Зельдович, и. Д. Новиков, 1964).
- •§ 103. Гравитационный коллапс пылевидной сферы
- •§ 104. Гравитационный коллапс несферических и вращающихся тел
- •1. Произвести разделение переменных в уравнении Гамильтона — Якоби для частицы, движущейся в поле Керра (в. Carter, 1968). Решение. В уравнении Гамильтона — Якоби
- •§ 105. Гравитационное поле вдали от тел
- •2. Определить систематическое (вековое) смещение орбиты частицы, движущейся в поле центрального тела, связанное с вращением последнего (/. Lense, н. Thirring, 1918).
- •§ 106. Уравнения движения системы тел во втором приближении
- •1. Определить действие для гравитационного поля в ньютоновском приближении.
- •Глава XIII
- •§ 107. Слабые гравитационные волны
- •§ 108. Гравитационные волны в искривленном пространстве-времени
- •§ 109. Сильная гравитационная волна
- •§ 110. Излучение гравитационных волн
- •51»! , Излучение гравитационных волн 45j
- •2. Найти среднюю (по периоду обращения) энергию, излучаемую в виде гравитационных волн системой двух тел, движущихся по эллиптическим орбитам (р. С. Peters, I. Mathews1)).
- •3. Определить среднюю (по времени) скорость потери момента импульса системой стационарно движущихся тел, испускающей гравитационные волны.
- •4. Для системы двух тел, движущихся по эллиптическим орбитам, найти средний теряемый ею в единицу времени момент импульса.
- •Глава XIV
- •§ 111. Изотропное пространство
- •§ 112. Закрытая изотропная модель
- •D0 1 d 8jtfe то
- •§ 113. Открытая изотропная модель
- •§ 114. Красное смещение
- •§ 115. Гравитационная устойчивость изотропного мира
- •§ 116. Однородные пространства
- •§ 117. Плоская анизотропная модель
- •§ 118. Колебательный режим приближения к особой точке
- •§ 119. Особенность по времени в общем космологическом решении уравнений Эйнштейна
- •Реперные 377, 483 Волновая зона 227 Волновой вектор 156, 158
- •Пакет 177
- •Магнитная 189 Лоренцева калибровка 150, 338
- •Сила 73
- •Отдачи при излучении 251
- •Торможения излучением 269, 274, 284, 456
- •Лагранжа 44, 70, 293, 319
- •Эйри 201, 264
§ 60] Дифракция френеля jq3
больших по абсолютной величине отрицательных значениях гл Для этого поступим следующим образом. Интегрируя по частям, имеем:
оо оо
) е аТ> И | w | 6 ^ 2< J Ч2
Интегрируя в правой части равенства еще раз по частям и продолжая этот процесс, получим ряд по степеням 1/j ш j:
оо
\ ^dn = e-(--^ + T[irF- ...), (60,6)
Хотя бесконечный ряд такого вида и не является сходящимся, но ввиду того, что при больших \ w\ величина его последовательных членов быстро падает, уже первый его член дает хорошее представление стоящей слева функции при достаточно больших \w\ (ряды такого рода называются асимптотическими). Таким образом, для интенсивности I(w) (60,5) получим следующую асимптотическую формулу, пригодную для больших отрицательных значений ш:
Мы видим, что в области геометрической тени, вдали от, ее края интенсивность стремится к нулю обратно пропорционально квадрату расстояния от края тени.
Рассмотрим теперь положительные значения w, т. е. область выше плоскости ху. Пишем:
оо -} оо — W оо
— W — оо —00 w
При достаточно больших w можно воспользоваться асимптотическим представлением стоящего в правой части равенства интеграла, и мы будем иметь:
оо
\ e'f di) ~ (1 + i) aJ± + -^е"»'. (60,8)
—да
Подставляя это выражение в (60,5), получим:
Таким образом, в освещенной области, вдали от края тени, интенсивность имеет неограниченный ряд максимумов и минимумов, так что отношение J/fa колеблется в обе стороны от единицы. Размах этих колебаний уменьшается с ростом w об-! ратно пропорционально расстоянию от края геометрической тени, а места максимумов и минимумов постепенно сближаются друг с другом.
При небольших w функция I(w) имеет качественно тот же характер (рис. 12). В области геометрической тени интенсивность спадает монотонно при удалении от границы тени (на
|
|
|
Геометрическая |
/ . Освещенная ебяасть |
|
тень |
|
|
|
|
w |
|
Рис. 12 |
|
самой этой границе L/Io = XU). При положительных w интенсивность имеет чередующиеся максимумы и минимумы. В первом, наибольшем из максимумов, ///»== 1,37.
§ 61. Дифракция Фраунгофера
Особый интерес для физических применений имеют дифракционные явления, возникающие при падении на экраны плоскопараллельного пучка лучей. В результате дифракции пучок теряет параллельность и появляется свет, распространяющийся в направлениях, отличных от первоначального. Поставим задачу об определении распределения по направлениям интенсивности дифрагированного света на больших расстояниях позади экрана (такая постановка вопроса отвечает так называемой дифракции Фраунгофера). При этом мы снова ограничиваемся случаем малых отклонений от геометрической оптики, т. е. предполагаем малыми углы отклонения от первоначального направления лучей (углы дифракции).
Поставленную задачу можно было бы решить, исходя из общей формулы (59,2), переходя в ней к пределу бесконечно удаленных от экрана источника света и точки наблюдения. Характерной особенностью рассматриваемого случая является при этом то обстоятельство, что в интеграле, определяющем интенсивность дифрагированного света, существенна вся волновая поверхность, по которой производится интегрирование (в противоположность случаю дифракции Френеля, в котором играли роль лишь участки волновой поверхности вблизи края экранов)').
Проще, однако, рассмотреть поставленный вопрос заново, не прибегая к помощи общей формулы (59,2).
Обозначим посредством и0 то поле позади экранов, которое имелось бы при строгом соблюдении геометрической оптики. Оно представляет собой плоскую волну, в поперечном сечении которой, однако, имеются участки (отвечающие «тени» непрозрачных экранов) с равным нулю полем. Обозначим посредством S ту часть плоскости поперечного сечения, на которой поле и0 отлично от нуля; поскольку каждая такая плоскость является волновой поверхностью плоской волны, то «о = const вдоль всей площади S.
В действительности, однако, волна с ограниченной площадью поперечного сечения не может быть строго плоской (см. § 58). В ее пространственное разложение Фурье входят компоненты с волновыми векторами различных направлений, что и является источником дифракции.
Разложим ноле ио в двухмерный интеграл Фурье по координатам у, z в плоскости поперечного сечения волны. Для компонент Фурье имеем:
где q — постоянный вектор в плоскости yz; интегрирование производится фактически лишь по той части 5 плоскости yz, на которой «о отлично от нуля. Если к есть волновой вектор падающей волны, то компоненте поля ыче*чг отвечает волновой вектор k' = k + q. Таким образом, вектор q = k'— к определяет изменение волнового вектора света при дифракции. Поскольку абсолютные значения k — k' — tojc, то малые углы дифракции 0У, Эг в плоскостях ху и хг, связаны с составляющими вектора q соотношениями
Ф п „ № о
(61,2)
При малом отклонении от геометрической оптики компоненты разложения поля ц0 можно считать совпадающими
') Критерии дифракции Френеля и Фраунгофера легко получить, вернувшись к формуле (60,2) и применив ее, например, к щели ширины а (вместо края изолированного экрана). Интегрирование по йг в (60,2) должно производиться при этом в пределах от 0 до а. Дифракции Френеля соответствует ситуация, когда в экспоненте подынтегрального выражения существен член с г2 и верхний предел интеграла может быть заменен на оо. Для этого должно быть
Напротив, если в этом неравенстве стоит обратный знак, член с г2 может быть опущен; этому соответствует случаи дифракции Фраунгофера.
с компонентами истинного поля дифрагированного света, так что формула (61,1) решает поставленную задачу.
Распределение интенсивности дифрагированного света определяется квадратом | uq |2 как функцией вектора q. Количественная связь с интенсивностью падающего света устанавливается формулой
(ср. (49,8)). Отсюда видно, что относительная интенсивность дифракции в элемент телесного угла do = dQydQz' дается величиной
(2Я)2
\ 2лс J j u0
do. (61,4)
Рассмотрим дифракцию Фраунгофера от 'двух экранов, являющихся «дополнительными» по отношению друг к другу: первый экран имеет отверстия там, где второй непрозрачен, и наоборот. Обозначим посредством и'1) и ы<2) поле света, дифрагировавшего на этих экранах (при одинаковом в обоих случаях падающем свете). Поскольку и{*} и u(q2) выражаются интегралами (61,1), взятыми по площадям отверстий в экранах, а отверстия в обоих экранах дополняют друг друга до целой плоскости, то сумма и^' + и^ есть компонента Фурье поля, получающегося при отсутствии экранов, т. е. просто падающего света. Но падающий свет представляет собой строго плоскую волну с определенным направлением распространения, поэтому "'q1' "т" uq2) = 0 при всяком отличном от нуля q. Таким образом, имеем и{^ == — M(q2) или, для соответствующих интенсивностей,
КТ^КЧ2 приЧ^0. (61,5)
Это значит, что дополнительные экраны дают одинаковые распределения интенсивности дифрагированного света (так называемый принцип Бабине).
Упомянем здесь об одном интересном следствии принципа Бабине. Рассмотрим какое-нибудь черное тело, т. е. тело, полностью поглощающее весь падающий на него свет. Согласно геометрической оптике при освещении такого тела за ним образовалась бы область геометрической тени, площадь сечения которой была бы равна площади сечения тела в направлении, перпендикулярном к направлению падения света. Наличие дифракции приведет, однако, к частичному отклонению света от первоначального направления. В результате на большом расстоянии позади тела тени не будет, а наряду со светом, распространяющимся в первоначальном направлении, будет также и некоторое количество света, распространяющегося под небольшими углами к своему первоначальному направлению. Легко определить интенсивность этого, как говорят, рассеянного света. Для этого замечаем, что согласно принципу Бабине количество света, отклонившегося вследствие дифракции на рассматриваемом теле, равно количеству света, отклоняющегося при дифракции от прорезанного в непрозрачном экране отверстия, форма и площадь которого совпадают с формой и площадью поперечного сечения тела. Но при дифракции Фраунгофера от отверстия происходит отклонение всего проходящего через отверстие света. Отсюда следует, что полное количество света, рассеянного на черном теле, равно количеству света, падающего на его поверхность и поглощаемого им.
Задачи