
- •4 По. Излучение гравитационных волн .......... . 450
- •Глава I
- •§ 1. Скорость распространения взаимодействий
- •§ 2. Интервал
- •§ 3. Собственное время
- •§ 4. Преобразование Лоренца
- •§ 5. Преобразование скорости
- •§ 6. Четырехмерные векторы
- •1. Найти закон преобразования компонент симметричного 4-тензора л'* при преобразовании Лоренца (6,1).
- •2. То же для антисимметричного тензора л'*.
- •§ 7. Четырехмерная скорость
- •Глава II
- •§ 8, Принцип наименьшего действия
- •§ 9. Энергия и импульс
- •1) Таковы световые кванты — фотоны, а также, возможно, нейтрино.
- •§ 10] Преобразование функции распределения 49
- •§ 10. Преобразование функции распределения
- •1. Частица, движущаяся со скоростью V, распадается «на лету» на две частицы. Определить связь между углами вылета последних и их энергиями.
- •2. Найти распределение раеладных частиц по энергиям в л-системе.
- •3. Определить интервал значений, которые может принимать в л-си-стеме угол между двумя распадными частицами (угол разлета) при распаде на две одинаковые частицы.
- •4. Найти угловое распределение в л-системе для распадных частиц с массой, равной нулю.
- •4Я(1 — Ксозв)2 '
- •5. Найти, распределение по углам разлета в л-системе при распаде на две частицы с массами, равными нулю.
- •6. Определить наибольшую энергию, которую может унести одна из распадных частиц при распаде неподвижной частицы с массой м на три частицы mi, тг, т3.
- •§ 12. Инвариантное сечение
- •§ 13. Упругие столкновения частиц
- •§ 14. Момент импульса
- •Глава III
- •§ 15. Элементарные частицы в теории относительности
- •§ 16. Четырехмерный потенциал поля
- •§ 17. Уравнения движения заряда в поле
- •§ 18. Калибровочная инвариантность
- •§ 19. Постоянное электромагнитное поле
- •§ 21. Движение в постоянном однородном магнитном поле
- •§ 22. Движение заряда в постоянных однородных электрическом и магнитном полях
- •1. Определить релятивистское движение заряда в параллельных однородных электрическом и магнитном полях.
- •2. Определить релятивистское движение заряда во взаимно перпендикулярных и равных по величине электрическом и магнитном полях1).
- •3. Определить скорость дрейфа ведущего центра орбиты нерелятивистской заряженной частицы в квазиоднородном постоянном магнитном поле (я. Alfven, 1940).
- •§ 23. Тензор электромагнитного поля
- •§ 24. Преобразование Лоренца для поля
- •5 25] Инварианты поля 91
- •§ 25. Инварианты поля
- •Глава IV
- •§ 26. Первая пара уравнений Максвелла
- •1) Уравнения Максвелла — основные уравнения электродинамики — была впервые сформулированы Дж, Максвеллом в 1860-х годах.
- •§ 27. Действие для электромагнитного поля
- •8 28] Четырехмерный вектор тока 101
- •§ 29. Уравнение непрерывности
- •§ 30. Вторая пара уравнений Максвелла
- •§ 31. Плотность и поток анергии
- •§ 32. Тензор энергии-импульса
- •§ 33. Тензор энергии-импульса электромагнитного поля
- •Д (dAtfdx*) 4я '
- •§ 35. Тензор энергии-импульса макроскопических тел
- •Глава V
- •§ 36. Закон Кулона
- •§ 37. Электростатическая энергия зарядов
- •§ 38. Поле равномерно движущегося заряда
- •5 88] Поле равномерно движущегося заряда 129
- •§ 39] Движение в кулонов ом поле 131
- •2. Определить эффективное сечение рассеяния на малые углы при рас* сеянии частиц кулоновым полем.
- •§ 40. Дипольный момент
- •5 4!) Муяьтипьльные моменты |35
- •§ 41. Мультипольные моменты
- •2) В соответствии с определением, принятым в квантовой механике.
- •§ 42. Система зарядов во внешнем поле
- •§ 43. Постоянное магнитное поле
- •§ 44. Магнитный момент»
- •§ 45. Теорема Лармора
- •Глава VI
- •§ 46. Волновое уравнение
- •§ 47. Плоские волны
- •1. Определить силу, действующую на стенку, от которой отражается [(с коэффициентом отражения r) падающая на нее плоская электромагнит- ная волна.
- •2. Методом Гамильтона — Якоби определить движение заряда в поле плоской электромагнитной волны.
- •§ 48. Монохроматическая плоская волна
- •1. Определить направление и величину осей эллипса поляризации по комплексной амплитуде е0.
- •2. Определить движение заряда в поле плоской -монохроматической линейно поляризованной волны.
- •3. Определить движение заряда в поле поляризованной по кругу волны.
- •§ 49. Спектральное разложение
- •§ 50. Частично поляризованный свет
- •1. Разложить произвольный частично поляризованный свет на «естественную» и «поляризованную» части.
- •2) Для прямого доказательства замечаем, что поскольку поле волны
- •3. Найти закон преобразования параметров Стокса при повороте осей у, z на угол ф.
- •§ 51. Разложение электростатического поля
- •§ 52. Собственные колебания поля
- •Глава VII
- •§ 53. Геометрическая оптика
- •§ 55. Угловой эйконал
- •§ 56. Тонкие пучки лучей
- •1. Определить фокусное расстояние для отображения с помощью двух аксиально-симметричных оптических систем с совпадающими оптическими осями.
- •2. Определить фокусное расстояние «магнитной линзы» для заряженных частиц, представляющей собой продольное однородное магнитное поле в участке длины I (рис. 8) ').
- •§ 57. Отображение широкими пучками лучей
- •§ 58. Пределы геометрической оптики
- •§ 59. Дифракция
- •§ 59] Дифракция "j97
- •§ 60. Дифракция Френеля
- •§ 60] Дифракция френеля jq3
- •§ 61. Дифракция Фраунгофера
- •1. Определить дифракцию Фраунгофера при нормальном падении плоской волны на бесконечную щель (ширины 2а) с параллельными краями, прорезанную в непрозрачном экране.
- •Глава VIII
- •§ 62. Запаздывающие потенциалы
- •§ 63. Потенциалы Лиенара — Вихерта
- •§ 64. Спектральное разложение запаздывающих потенциалов
- •§ 65. Функция Лагранжа с точностью до членов второго порядка
- •1. Определить (с точностью до членов второго порядка) центр инерции системы взаимодействующих частиц.
- •2. Написать функцию Гамильтона во втором приближении для системы из двух частиц, исключив из нее движение системы как целого.
- •Глава IX
- •§ 66. Поле системы зарядов на далеких расстояниях
- •3) В формуле (63,8) для электрического поля рассматриваемому при- ближению соответствует пренебрежение первым членом по сравнению со вторым,
- •§66} Поле системы зарядов на далеких расстояниях
- •§ 67. Дипольное излучение
- •1. Определить излучение диполя d, вращающегося в одной плоскости с постоянной угловой скоростью q').
- •§ 68. Дипольное излучение при столкновениях
- •2) Фактически обычно речь идет о дипольном моменте двух частиц — рассеиваемой и рассеивающей — относительно их общего центра инерции.
- •§ 69. Тормозное излучение малых частот
- •2) Применимость формул, однако, ограничена квантовым условием малости йш по сравнению с полной кинетической энергией частицы.
- •§ 70. Излучение при кулоновом взаимодействии
- •1, Определить полную среднюю интенсивность излучения при эллиптическом движении двух притягивающихся зарядов.
- •2. Определить полное излучение bJ5 при столкновении двух заряженных частиц.
- •3. Определить полное эффективное излучение при рассеянии потока частиц в кулоновом поле отталкивания. Решение. Искомая величина есть
- •§ 71. Квадрупольное и магнитно-дипольное излучения
- •1. Вычислить полное эффективное излучение при рассеянии потока заряженных частиц одинаковыми с ними частицами.
- •2. Найти силу отдачи, действующую на излучающую систему частиц, со-вершающих стационарное финитное движение.
- •§ 72. Поле излучения на близких расстояниях
- •1. Определить потенциалы поля квадрупольного и магнитно-дипольного излучений на близких расстояниях.
- •Спектральные компоненты потенциалов квадрупольного излучения;
- •2. Найти скорость потери момента импульса системой зарядов при да-польном излучении ею электромагнитных волн.
- •1) Отличное от нуля значение Нп получилось бы лишь при учете членов высшего порядка по а//?0-
- •§ 73. Излучение быстро движущегося заряда
- •2. Определить направления, в которых обращается в нуль интенсивность излучения движущейся частицы.
- •3. Определить интенсивность излучения заряжен- рИс- 15 ной частицей, стационарно движущейся в поле цир-
- •4. То же в поле линейно поляризованной волны.
- •§ 74. Магнито-тормозное излучение
- •1, Определить закон изменения энергии со временем для заряда, движущегося по круговой орбите в постоянном однородном магнитном поле и теряющего энергию путем излучения.
- •2. Найти асимптотическую формулу для спектрального распределения излучения с большими значениями л для частицы, движущейся по окруж- ности со скоростью, не близкой к скорости света.
- •3. Найти поляризацию магнито-тормозного излучения.
- •§ 75. Торможение излучением
- •§ 76. Торможение излучением в релятивистском случае
- •Du1 е cik d2ul е dFik I , е2 с1кв I
- •2Es dFik „ „I 2e* вц r tik _, 2e* IV , д, pkm„ ) ц1
- •1. Определить предельную энергию, которой может обладать частица после пролета через поле магнитного диполя т; вектор ш и направление движения лежат в одной плоскости.
- •2. Написать трехмерное выражение для силы торможения в релятивистском случае.
- •§ 77. Спектральное разложение излучения в ультрарелятивистском случае
- •1. Определить спектральное распределение полной (по всем направлениям) интенсивности излучения при условии (77,2).
- •2. Определить спектральное распределение полной (по всем направлениям) излученной энергии при условии (77,4).
- •§ 78. Рассеяние свободными зарядами
- •4. Определить коэффициент деполяризации рассеянного света при рассея- нии естественного света свободным зарядом.
- •5. Определить частоту (ш') света, рассеянного движущимся зарядом. Решение. В системе координат, где заряд покоится, частота света
- •6. Определить угловое распределение рассеяния линейно поляризованной волны зарядом, движущимся с произвольной скоростью V в направлении распространения волны.
- •7. Определить движение заряда под влиянием средней силы, действующей на него со стороны рассеиваемой им волны.
- •8. Определить сечение рассеяния линейно поляризованной волны осциллятором, с учетом торможения излучением.
- •§ 79. Рассеяние волн с малыми частотами
- •§ 80. Рассеяние волн с большими частотами
- •Глава X
- •§ 81. Гравитационное поле в нерелятивистской механике
- •§ 82. Гравитационное поле в релятивистской механике
- •§ 83. Криволинейные координаты
- •ЕШт _ дх' дхк дх1 дхт prst дх'" дх,г дх'3 дх'*
- •§ 84.. Расстояния и промежутки времени
- •§ 85. Ковариантное дифференцирование
- •§ 86. Связь символов Кристоффеля с метрическим тензором
- •Xikil дх1 Smft1 tl «*т* ы дхС 1 k,u 1 l.Kl
- •§ 86] Символы кристоффеля и метрический тензор 315
- •§ 87. Движение частицы в гравитационном поле
- •§ 88. Постоянное гравитационное поле
- •2. Вывести принцип Ферма для распространения лучей в постоянном гравитационном поле.
- •§ 90. Уравнения электродинамики при наличии гравитационного поля
- •Глава XI
- •§ 91. Тензор кривизны
- •I. Определить относительное 4-ускорение двух частиц, движущихся по бесконечно близким геодезическим мировым линиям.
- •2. Записать уравнения Максвелла в пустоте для 4-потенциала в лорен* цевой калибровке.
- •§ 92. Свойства тензора кривизны
- •Riklm — gtnR"klitf
- •IkUm дх'п дхшдхк дхтдх1 '
- •3) Мы увидим ниже (§ 95), что этим свойством обладает тензор кри- визны для гравитационного поля в пустоте.
- •§ 92] Свойства тензора кривизны 343
- •§ 93. Действие для гравитационного поля
- •1_ Оо ав уй dggy dgpa
- •§ 94. Тензор энергии-импульса
- •§ 95. Уравнения Эйнштейна
- •2) Вариационный принцип для гравитационного поля указан Гильбертом (d, Hilbert, 1915).
- •§ 96. Псевдотензор энергии-импульса гравитационного поля
- •I6jife l а*' a*' j)
- •§ 97. Синхронная система отсчета
- •1. Найти вид разложения решения уравнений гравитационного поля в пустоте вблизи не особой, регулярной точки по времени.
- •3. Найти общий вид бесконечно малого преобразования, не нарушающего синхронности системы отсчета.
- •§ 98. Тетрадное представление уравнений Эйнштейна
- •Глава XII
- •§ 99. Закон Ньютона
- •2) Потенциал поля внутри однородного шара радиуса а:
- •1. Найти инварианты тензора кривизны для метрики Шварцшильда (100,14).
- •3. Определить форму поверхности вращения, на которой геометрия была бы такой же, как на проходящей через начало координат «плоскости» в центрально-симметричном гравитационном поле в пустоте.
- •4. Преобразовать интервал (100,14) к координатам, в которых пространственная метрика имела бы конформно-эвклидов вид (т. Е. Dl2 пропорционально своему евклидову выражению).
- •5. Получить уравнения центрально-симметричного гравитационного поля в веществе в сопутствующей системе отсчета.
- •6, Найти уравнения, определяющие статическое гравитационное поле в пустоте вокруг неподвижного аксиально-симметричного тела (-#. Weyl, 1917),
- •§ 101. Движение в центрально-симметричном гравитационном поле
- •§ 102. Гравитационный коллапс сферического тела
- •V ygoadt /
- •1. Для частицы в поле коллапсара найти радиусы круговых орбит (с. А. Каплан, 1949).
- •2. Для движения в том же поле определить сечение гравитационного захвата падающих на бесконечности: а) нерелятивистских, б) ультрарелятивистских частиц (я. Б. Зельдович, и. Д. Новиков, 1964).
- •§ 103. Гравитационный коллапс пылевидной сферы
- •§ 104. Гравитационный коллапс несферических и вращающихся тел
- •1. Произвести разделение переменных в уравнении Гамильтона — Якоби для частицы, движущейся в поле Керра (в. Carter, 1968). Решение. В уравнении Гамильтона — Якоби
- •§ 105. Гравитационное поле вдали от тел
- •2. Определить систематическое (вековое) смещение орбиты частицы, движущейся в поле центрального тела, связанное с вращением последнего (/. Lense, н. Thirring, 1918).
- •§ 106. Уравнения движения системы тел во втором приближении
- •1. Определить действие для гравитационного поля в ньютоновском приближении.
- •Глава XIII
- •§ 107. Слабые гравитационные волны
- •§ 108. Гравитационные волны в искривленном пространстве-времени
- •§ 109. Сильная гравитационная волна
- •§ 110. Излучение гравитационных волн
- •51»! , Излучение гравитационных волн 45j
- •2. Найти среднюю (по периоду обращения) энергию, излучаемую в виде гравитационных волн системой двух тел, движущихся по эллиптическим орбитам (р. С. Peters, I. Mathews1)).
- •3. Определить среднюю (по времени) скорость потери момента импульса системой стационарно движущихся тел, испускающей гравитационные волны.
- •4. Для системы двух тел, движущихся по эллиптическим орбитам, найти средний теряемый ею в единицу времени момент импульса.
- •Глава XIV
- •§ 111. Изотропное пространство
- •§ 112. Закрытая изотропная модель
- •D0 1 d 8jtfe то
- •§ 113. Открытая изотропная модель
- •§ 114. Красное смещение
- •§ 115. Гравитационная устойчивость изотропного мира
- •§ 116. Однородные пространства
- •§ 117. Плоская анизотропная модель
- •§ 118. Колебательный режим приближения к особой точке
- •§ 119. Особенность по времени в общем космологическом решении уравнений Эйнштейна
- •Реперные 377, 483 Волновая зона 227 Волновой вектор 156, 158
- •Пакет 177
- •Магнитная 189 Лоренцева калибровка 150, 338
- •Сила 73
- •Отдачи при излучении 251
- •Торможения излучением 269, 274, 284, 456
- •Лагранжа 44, 70, 293, 319
- •Эйри 201, 264
§ 4. Преобразование Лоренца
Нашей целью будет сейчас нахождение формул преобразования от одной инерциальной системы отсчета к другой, т. е. формул, по которым, зная координаты х, у, z, t события в некоторой системе отсчета К, можно найти координаты х', у', z', f того же события в другой инерциальной системе К'.
В классической механике этот вопрос решается очень просто. В силу абсолютности времени мы имеем там t = г'; далее, если оси координат выбраны так, как мы это обычно делаем (т. е. оси х и х' совпадают, оси у, z паралельны осям у', г', движение вдоль осей х и х'), то координаты у и z будут, очевидно, равны координатам у' и г', а координаты х и х' будут отличаться на расстояние, пройденное одной системой относительно другой; если начало отсчета времени выбрано в момент, когда обе системы координат совпадали, а скорость системы К' относительно К есть V, то это расстояние есть Vt. Таким образом,
x = x'+Vt, у = у', z = z', t = t'. (4,1)
Эти формулы называются преобразованием. Галилея. Легко проверить, что это преобразование, как и следовало, не удовлетворяет требованию теории относительности, — оно не оставляет инвариантными интервалы между событиями.
Релятивистские же формулы преобразования мы будем искать исходя из требования, чтобы они оставляли интервалы инвариантными.
Как мы видели в § 2, интервал между двумя событиями можно рассматривать как расстояние между соответствующими двумя мировыми точками в четырехмерной системе координат. Мы можем, следовательно, сказать, что искомое преобразование должно оставлять неизменными все длины в четырехмерном пространстве х, у, z, ct. Но такими преобразованиями являются только параллельные переносы и вращения системы координат. Из них переносы системы координат параллельно самой себе не представляют интереса, так как сводятся просто к переносу начала пространственных координат и изменению момента на-
') Предполагается, разумеется, что эти точки и соединяющие их линии таковы, что все элементы ds вдоль линий времениподобны.
Указанное свойство интеграла связано с псевдоевклидовостью четырехмерной геометрии. В евклидовом пространстве интеграл был бы, конечно, минимален вдоль прямой линии.
чала отсчета времени. Таким образом, искомое преобразование должно математически выражаться как вращение четырехмерной системы координат х, у, z, t.
Всякое вращение в четырехмерном пространстве можно разложить на шесть вращений, а именно в плоскостях ху, zy, xz, tx, ty, tz (подобно тому, как всякое вращение в обычном пространстве можно разложить на три вращения в плоскостях ху, zy и xz). Первые три из этих вращений преобразуют только пространственные координаты; они соответствуют обычным пространственным поворотам.
Рассмотрим поворот в плоскости tx; координаты у и z при этом не меняются. Это преобразование должно оставлять неизменной, в частности, разность (ct)2 — х2 —квадрат «расстояния» от точки (ct, х) до начала координат. Связь между старыми и новыми координатами в этом преобразовании дается в наиболее общем виде формулами
х = х' сп гр + ct' shгр, ct = х' sh ip + ct'chip, (4,2)
где ip — «угол поворота»; простой проверкой легко убедиться, что при этом действительно будет c2t2 — x2 = c2t'2 — х'2. Формулы (4,2) отличаются от обычных формул преобразования при повороте осей координат заменой тригонометрических функций гиперболическими. В этом проявляется отличие псевдоевклидовой геометрии от евклидовой.
Мы ищем формулы преобразования от инерциальной системы отсчета К к системе К', которая движется относительно К со скоростью V вдоль оси х. При этом, очевидно, подвергаются преобразованию только координата х и время t. Поэтому это преобразование должно быть вида (4,2). Остается определить угол который может зависеть только от относительной скорости V1).
Рассмотрим движение в системе К начала координат системы отсчета К'. Тогда х1 = О и формулы (4,2) принимают вид
x = ct' ship, ct = ct' chip,
или, разделив одно на другое,
')
Во избежание недоразумений заметим,
что через V
мы
везде обозначаем постоянную
относительную скорость двух инерциальных
систем отсчета, а через v
—
скорость
движущейся частицы, вовсе не обязанную
быть постоянной.
Но x/t есть, очевидно, скорость V системы К' относительно К. Таким обазом,
Отсюда
V
shtp =
с
chip
Подставив это в (4,2), находим:
х
л
г'
+ W
г/ = у', г
t =
(4,3)
Это и есть искомые формулы преобразования. Они носят название формул преобразования Лоренца и имеют для дальнейшего фундаментальное значение.
Обратные формулы, выражающие х', у', z', f через х, у, z, t, проще всего получаются заменой V на —V (так как система К движется относительно К' со скоростью —V). Эти же формулы можно получить непосредственно, решая уравнения (4,3) относительно х', у', г', f.
Легко видеть из (4,3), что при предельном переходе с-»-со к классической механике формулы преобразования Лоренца действительно переходят в преобразование Галилея.
При V>c в формулах (4,3) координаты х, t делаются мнимыми; это соответствует тому факту, что движение со скоростью, большей скорости света, невозможно. Невозможно даже использование системы отсчета, движущейся со скоростью, равной скорости света, — при этом знаменатели в формулах (4,3) обратились бы в нуль.
Для скоростей V, малых по сравнению со скоростью света, вместо (4,3) можно пользоваться приближенными формулами
x = xr + Vf, у = у', г = У, t = f + ^-xf. (4,4)
Пусть в системе К покоится линейка, параллельная оси х. Длина ее, измеренная в этой системе, пусть будет Ax = x2 — х\ i(je2 и х\ — координаты обоих концов линейки в системе К). Найдем теперь длину этого стержня, измеренную в системе К'. Для этого надо найти координаты обоих концов стержня (д^ и xj) в этой системе в один и тот же момент времени V. Из (4,3) находим:
Длина стержня в системе К.' есть Ах' = х'2 — х\; вычитая х2 иё хь находим:
Ах-
Собственной длиной стержня называется его длина в той системе отсчета, в которой он покоится. Обозначим ее через /о = Ах, а длину того же стержня в какой-либо системе отсчета К' — через /. Тогда
/=/oV1--S-- (4'б)
Таким образом, самую большую длину стержень имеет в той системе отсчета, где он покоится. Длина его в системе, в кото-рой он движется со скоростью V, уменьшается в отношении -у7! — V2/c2-Этот результат теории относительности называется лоренцевым сокращением.
Поскольку поперечные размеры тела при его движении не меняются, то объем Т тела сокращается по аналогичной фор- муле:
У = г,
где То есть собственный объем тела.
Из преобразования Лоренца можно найти известные нам уже результаты относительно собственного времени (§ 3). Пусть в системе К' покоятся часы. В качестве двух событий возьмем два события, происшедших в одном и том же месте х', у', г' пространства в системе К'. Время в системе К' между этими событиями есть А/' = t'2 — i[. Найдем теперь время At, которое прошло между этими же событиями в системе отсчета К. Из (4,3) имеем:
2 / V3
или, вычитая одно из другого, t2~tl = At =
ht'
в полном согласии с (3,1).
Наконец, отметим еще одно общее свойство преобразований Лоренца, отличающее их от преобразований Галилея. Последние обладают, как говорят, свойством коммутативности, т. е. совместный результат двух последовательных преобразований
Галилея (с различными скоростями V! и V2) не зависит от порядка, в котором эти преобразования производятся. Напротив, результат двух последовательных преобразований Лоренца зависит, вообще говоря, от их последовательности. Чисто математически это видно уже из использованного выше формального истолкования этих преобразований как вращений четырехмерной системы координат: как известно, результат двух поворотов (вокруг различных осей) зависит от порядка их осуществления. Исключением являются лишь преобразования с параллельными векторами Vi и V2 (эквивалентные поворотам четырехмерной системы координат вокруг одной и той же оси).