
- •4 По. Излучение гравитационных волн .......... . 450
- •Глава I
- •§ 1. Скорость распространения взаимодействий
- •§ 2. Интервал
- •§ 3. Собственное время
- •§ 4. Преобразование Лоренца
- •§ 5. Преобразование скорости
- •§ 6. Четырехмерные векторы
- •1. Найти закон преобразования компонент симметричного 4-тензора л'* при преобразовании Лоренца (6,1).
- •2. То же для антисимметричного тензора л'*.
- •§ 7. Четырехмерная скорость
- •Глава II
- •§ 8, Принцип наименьшего действия
- •§ 9. Энергия и импульс
- •1) Таковы световые кванты — фотоны, а также, возможно, нейтрино.
- •§ 10] Преобразование функции распределения 49
- •§ 10. Преобразование функции распределения
- •1. Частица, движущаяся со скоростью V, распадается «на лету» на две частицы. Определить связь между углами вылета последних и их энергиями.
- •2. Найти распределение раеладных частиц по энергиям в л-системе.
- •3. Определить интервал значений, которые может принимать в л-си-стеме угол между двумя распадными частицами (угол разлета) при распаде на две одинаковые частицы.
- •4. Найти угловое распределение в л-системе для распадных частиц с массой, равной нулю.
- •4Я(1 — Ксозв)2 '
- •5. Найти, распределение по углам разлета в л-системе при распаде на две частицы с массами, равными нулю.
- •6. Определить наибольшую энергию, которую может унести одна из распадных частиц при распаде неподвижной частицы с массой м на три частицы mi, тг, т3.
- •§ 12. Инвариантное сечение
- •§ 13. Упругие столкновения частиц
- •§ 14. Момент импульса
- •Глава III
- •§ 15. Элементарные частицы в теории относительности
- •§ 16. Четырехмерный потенциал поля
- •§ 17. Уравнения движения заряда в поле
- •§ 18. Калибровочная инвариантность
- •§ 19. Постоянное электромагнитное поле
- •§ 21. Движение в постоянном однородном магнитном поле
- •§ 22. Движение заряда в постоянных однородных электрическом и магнитном полях
- •1. Определить релятивистское движение заряда в параллельных однородных электрическом и магнитном полях.
- •2. Определить релятивистское движение заряда во взаимно перпендикулярных и равных по величине электрическом и магнитном полях1).
- •3. Определить скорость дрейфа ведущего центра орбиты нерелятивистской заряженной частицы в квазиоднородном постоянном магнитном поле (я. Alfven, 1940).
- •§ 23. Тензор электромагнитного поля
- •§ 24. Преобразование Лоренца для поля
- •5 25] Инварианты поля 91
- •§ 25. Инварианты поля
- •Глава IV
- •§ 26. Первая пара уравнений Максвелла
- •1) Уравнения Максвелла — основные уравнения электродинамики — была впервые сформулированы Дж, Максвеллом в 1860-х годах.
- •§ 27. Действие для электромагнитного поля
- •8 28] Четырехмерный вектор тока 101
- •§ 29. Уравнение непрерывности
- •§ 30. Вторая пара уравнений Максвелла
- •§ 31. Плотность и поток анергии
- •§ 32. Тензор энергии-импульса
- •§ 33. Тензор энергии-импульса электромагнитного поля
- •Д (dAtfdx*) 4я '
- •§ 35. Тензор энергии-импульса макроскопических тел
- •Глава V
- •§ 36. Закон Кулона
- •§ 37. Электростатическая энергия зарядов
- •§ 38. Поле равномерно движущегося заряда
- •5 88] Поле равномерно движущегося заряда 129
- •§ 39] Движение в кулонов ом поле 131
- •2. Определить эффективное сечение рассеяния на малые углы при рас* сеянии частиц кулоновым полем.
- •§ 40. Дипольный момент
- •5 4!) Муяьтипьльные моменты |35
- •§ 41. Мультипольные моменты
- •2) В соответствии с определением, принятым в квантовой механике.
- •§ 42. Система зарядов во внешнем поле
- •§ 43. Постоянное магнитное поле
- •§ 44. Магнитный момент»
- •§ 45. Теорема Лармора
- •Глава VI
- •§ 46. Волновое уравнение
- •§ 47. Плоские волны
- •1. Определить силу, действующую на стенку, от которой отражается [(с коэффициентом отражения r) падающая на нее плоская электромагнит- ная волна.
- •2. Методом Гамильтона — Якоби определить движение заряда в поле плоской электромагнитной волны.
- •§ 48. Монохроматическая плоская волна
- •1. Определить направление и величину осей эллипса поляризации по комплексной амплитуде е0.
- •2. Определить движение заряда в поле плоской -монохроматической линейно поляризованной волны.
- •3. Определить движение заряда в поле поляризованной по кругу волны.
- •§ 49. Спектральное разложение
- •§ 50. Частично поляризованный свет
- •1. Разложить произвольный частично поляризованный свет на «естественную» и «поляризованную» части.
- •2) Для прямого доказательства замечаем, что поскольку поле волны
- •3. Найти закон преобразования параметров Стокса при повороте осей у, z на угол ф.
- •§ 51. Разложение электростатического поля
- •§ 52. Собственные колебания поля
- •Глава VII
- •§ 53. Геометрическая оптика
- •§ 55. Угловой эйконал
- •§ 56. Тонкие пучки лучей
- •1. Определить фокусное расстояние для отображения с помощью двух аксиально-симметричных оптических систем с совпадающими оптическими осями.
- •2. Определить фокусное расстояние «магнитной линзы» для заряженных частиц, представляющей собой продольное однородное магнитное поле в участке длины I (рис. 8) ').
- •§ 57. Отображение широкими пучками лучей
- •§ 58. Пределы геометрической оптики
- •§ 59. Дифракция
- •§ 59] Дифракция "j97
- •§ 60. Дифракция Френеля
- •§ 60] Дифракция френеля jq3
- •§ 61. Дифракция Фраунгофера
- •1. Определить дифракцию Фраунгофера при нормальном падении плоской волны на бесконечную щель (ширины 2а) с параллельными краями, прорезанную в непрозрачном экране.
- •Глава VIII
- •§ 62. Запаздывающие потенциалы
- •§ 63. Потенциалы Лиенара — Вихерта
- •§ 64. Спектральное разложение запаздывающих потенциалов
- •§ 65. Функция Лагранжа с точностью до членов второго порядка
- •1. Определить (с точностью до членов второго порядка) центр инерции системы взаимодействующих частиц.
- •2. Написать функцию Гамильтона во втором приближении для системы из двух частиц, исключив из нее движение системы как целого.
- •Глава IX
- •§ 66. Поле системы зарядов на далеких расстояниях
- •3) В формуле (63,8) для электрического поля рассматриваемому при- ближению соответствует пренебрежение первым членом по сравнению со вторым,
- •§66} Поле системы зарядов на далеких расстояниях
- •§ 67. Дипольное излучение
- •1. Определить излучение диполя d, вращающегося в одной плоскости с постоянной угловой скоростью q').
- •§ 68. Дипольное излучение при столкновениях
- •2) Фактически обычно речь идет о дипольном моменте двух частиц — рассеиваемой и рассеивающей — относительно их общего центра инерции.
- •§ 69. Тормозное излучение малых частот
- •2) Применимость формул, однако, ограничена квантовым условием малости йш по сравнению с полной кинетической энергией частицы.
- •§ 70. Излучение при кулоновом взаимодействии
- •1, Определить полную среднюю интенсивность излучения при эллиптическом движении двух притягивающихся зарядов.
- •2. Определить полное излучение bJ5 при столкновении двух заряженных частиц.
- •3. Определить полное эффективное излучение при рассеянии потока частиц в кулоновом поле отталкивания. Решение. Искомая величина есть
- •§ 71. Квадрупольное и магнитно-дипольное излучения
- •1. Вычислить полное эффективное излучение при рассеянии потока заряженных частиц одинаковыми с ними частицами.
- •2. Найти силу отдачи, действующую на излучающую систему частиц, со-вершающих стационарное финитное движение.
- •§ 72. Поле излучения на близких расстояниях
- •1. Определить потенциалы поля квадрупольного и магнитно-дипольного излучений на близких расстояниях.
- •Спектральные компоненты потенциалов квадрупольного излучения;
- •2. Найти скорость потери момента импульса системой зарядов при да-польном излучении ею электромагнитных волн.
- •1) Отличное от нуля значение Нп получилось бы лишь при учете членов высшего порядка по а//?0-
- •§ 73. Излучение быстро движущегося заряда
- •2. Определить направления, в которых обращается в нуль интенсивность излучения движущейся частицы.
- •3. Определить интенсивность излучения заряжен- рИс- 15 ной частицей, стационарно движущейся в поле цир-
- •4. То же в поле линейно поляризованной волны.
- •§ 74. Магнито-тормозное излучение
- •1, Определить закон изменения энергии со временем для заряда, движущегося по круговой орбите в постоянном однородном магнитном поле и теряющего энергию путем излучения.
- •2. Найти асимптотическую формулу для спектрального распределения излучения с большими значениями л для частицы, движущейся по окруж- ности со скоростью, не близкой к скорости света.
- •3. Найти поляризацию магнито-тормозного излучения.
- •§ 75. Торможение излучением
- •§ 76. Торможение излучением в релятивистском случае
- •Du1 е cik d2ul е dFik I , е2 с1кв I
- •2Es dFik „ „I 2e* вц r tik _, 2e* IV , д, pkm„ ) ц1
- •1. Определить предельную энергию, которой может обладать частица после пролета через поле магнитного диполя т; вектор ш и направление движения лежат в одной плоскости.
- •2. Написать трехмерное выражение для силы торможения в релятивистском случае.
- •§ 77. Спектральное разложение излучения в ультрарелятивистском случае
- •1. Определить спектральное распределение полной (по всем направлениям) интенсивности излучения при условии (77,2).
- •2. Определить спектральное распределение полной (по всем направлениям) излученной энергии при условии (77,4).
- •§ 78. Рассеяние свободными зарядами
- •4. Определить коэффициент деполяризации рассеянного света при рассея- нии естественного света свободным зарядом.
- •5. Определить частоту (ш') света, рассеянного движущимся зарядом. Решение. В системе координат, где заряд покоится, частота света
- •6. Определить угловое распределение рассеяния линейно поляризованной волны зарядом, движущимся с произвольной скоростью V в направлении распространения волны.
- •7. Определить движение заряда под влиянием средней силы, действующей на него со стороны рассеиваемой им волны.
- •8. Определить сечение рассеяния линейно поляризованной волны осциллятором, с учетом торможения излучением.
- •§ 79. Рассеяние волн с малыми частотами
- •§ 80. Рассеяние волн с большими частотами
- •Глава X
- •§ 81. Гравитационное поле в нерелятивистской механике
- •§ 82. Гравитационное поле в релятивистской механике
- •§ 83. Криволинейные координаты
- •ЕШт _ дх' дхк дх1 дхт prst дх'" дх,г дх'3 дх'*
- •§ 84.. Расстояния и промежутки времени
- •§ 85. Ковариантное дифференцирование
- •§ 86. Связь символов Кристоффеля с метрическим тензором
- •Xikil дх1 Smft1 tl «*т* ы дхС 1 k,u 1 l.Kl
- •§ 86] Символы кристоффеля и метрический тензор 315
- •§ 87. Движение частицы в гравитационном поле
- •§ 88. Постоянное гравитационное поле
- •2. Вывести принцип Ферма для распространения лучей в постоянном гравитационном поле.
- •§ 90. Уравнения электродинамики при наличии гравитационного поля
- •Глава XI
- •§ 91. Тензор кривизны
- •I. Определить относительное 4-ускорение двух частиц, движущихся по бесконечно близким геодезическим мировым линиям.
- •2. Записать уравнения Максвелла в пустоте для 4-потенциала в лорен* цевой калибровке.
- •§ 92. Свойства тензора кривизны
- •Riklm — gtnR"klitf
- •IkUm дх'п дхшдхк дхтдх1 '
- •3) Мы увидим ниже (§ 95), что этим свойством обладает тензор кри- визны для гравитационного поля в пустоте.
- •§ 92] Свойства тензора кривизны 343
- •§ 93. Действие для гравитационного поля
- •1_ Оо ав уй dggy dgpa
- •§ 94. Тензор энергии-импульса
- •§ 95. Уравнения Эйнштейна
- •2) Вариационный принцип для гравитационного поля указан Гильбертом (d, Hilbert, 1915).
- •§ 96. Псевдотензор энергии-импульса гравитационного поля
- •I6jife l а*' a*' j)
- •§ 97. Синхронная система отсчета
- •1. Найти вид разложения решения уравнений гравитационного поля в пустоте вблизи не особой, регулярной точки по времени.
- •3. Найти общий вид бесконечно малого преобразования, не нарушающего синхронности системы отсчета.
- •§ 98. Тетрадное представление уравнений Эйнштейна
- •Глава XII
- •§ 99. Закон Ньютона
- •2) Потенциал поля внутри однородного шара радиуса а:
- •1. Найти инварианты тензора кривизны для метрики Шварцшильда (100,14).
- •3. Определить форму поверхности вращения, на которой геометрия была бы такой же, как на проходящей через начало координат «плоскости» в центрально-симметричном гравитационном поле в пустоте.
- •4. Преобразовать интервал (100,14) к координатам, в которых пространственная метрика имела бы конформно-эвклидов вид (т. Е. Dl2 пропорционально своему евклидову выражению).
- •5. Получить уравнения центрально-симметричного гравитационного поля в веществе в сопутствующей системе отсчета.
- •6, Найти уравнения, определяющие статическое гравитационное поле в пустоте вокруг неподвижного аксиально-симметричного тела (-#. Weyl, 1917),
- •§ 101. Движение в центрально-симметричном гравитационном поле
- •§ 102. Гравитационный коллапс сферического тела
- •V ygoadt /
- •1. Для частицы в поле коллапсара найти радиусы круговых орбит (с. А. Каплан, 1949).
- •2. Для движения в том же поле определить сечение гравитационного захвата падающих на бесконечности: а) нерелятивистских, б) ультрарелятивистских частиц (я. Б. Зельдович, и. Д. Новиков, 1964).
- •§ 103. Гравитационный коллапс пылевидной сферы
- •§ 104. Гравитационный коллапс несферических и вращающихся тел
- •1. Произвести разделение переменных в уравнении Гамильтона — Якоби для частицы, движущейся в поле Керра (в. Carter, 1968). Решение. В уравнении Гамильтона — Якоби
- •§ 105. Гравитационное поле вдали от тел
- •2. Определить систематическое (вековое) смещение орбиты частицы, движущейся в поле центрального тела, связанное с вращением последнего (/. Lense, н. Thirring, 1918).
- •§ 106. Уравнения движения системы тел во втором приближении
- •1. Определить действие для гравитационного поля в ньютоновском приближении.
- •Глава XIII
- •§ 107. Слабые гравитационные волны
- •§ 108. Гравитационные волны в искривленном пространстве-времени
- •§ 109. Сильная гравитационная волна
- •§ 110. Излучение гравитационных волн
- •51»! , Излучение гравитационных волн 45j
- •2. Найти среднюю (по периоду обращения) энергию, излучаемую в виде гравитационных волн системой двух тел, движущихся по эллиптическим орбитам (р. С. Peters, I. Mathews1)).
- •3. Определить среднюю (по времени) скорость потери момента импульса системой стационарно движущихся тел, испускающей гравитационные волны.
- •4. Для системы двух тел, движущихся по эллиптическим орбитам, найти средний теряемый ею в единицу времени момент импульса.
- •Глава XIV
- •§ 111. Изотропное пространство
- •§ 112. Закрытая изотропная модель
- •D0 1 d 8jtfe то
- •§ 113. Открытая изотропная модель
- •§ 114. Красное смещение
- •§ 115. Гравитационная устойчивость изотропного мира
- •§ 116. Однородные пространства
- •§ 117. Плоская анизотропная модель
- •§ 118. Колебательный режим приближения к особой точке
- •§ 119. Особенность по времени в общем космологическом решении уравнений Эйнштейна
- •Реперные 377, 483 Волновая зона 227 Волновой вектор 156, 158
- •Пакет 177
- •Магнитная 189 Лоренцева калибровка 150, 338
- •Сила 73
- •Отдачи при излучении 251
- •Торможения излучением 269, 274, 284, 456
- •Лагранжа 44, 70, 293, 319
- •Эйри 201, 264
§ 18. Калибровочная инвариантность
Рассмотрим теперь вопрос о том, насколько однозначно определены потенциалы поля. При этом следует учесть, что поле характеризуется тем действием, которое оно оказывает на движение находящихся в нем зарядов. Но в уравнения движения (17,5) входят не потенциалы, а напряженности поля Е и Н. Поэтому два поля физически тождественны, если они характеризуются одними и теми же векторами Е и Н.
Если заданы потенциалы А и <р, то этим, согласно (17,3) и (17,4), вполне однозначно определены Е и Н, а значит и поле. Однако одному и тому же полю могут соответствовать различные потенциалы. Чтобы убедиться в этом, прибавим к каждой компоненте потенциала Ак величину —df/dxk, где / — произвольная функция от координат и времени. Тогда потенциал Ah переходит в
к-<".'>
При такой замене в интеграле действия (16,1) появится дополнительный член, представляющий собой полный дифференциал:
±ILdxk = d(^f\ (18,2)
с дхк \с j
что не влияет на уравнения движения (см. I § 2).
Если вместо четырехмерного потенциала ввести векторный и скалярный и вместо координат х' — координаты ct, х, у, г, то четыре равенства (18,1) можно написать в виде
A' = A + gradf, qr- = q>-i"§. (18,3)
Легко убедиться в том, что электрическое и магнитное поля, определенные равенствами (17,3—4), действительно не изменяются при подстановке вместо А и ф потенциалов А' и ф', определенных согласно (18,3). Таким образом, преобразование потенциалов (18,1) не изменяет поля. Потенциалы определены поэтому не однозначно — векторный потенциал определен с точностью до градиента произвольной функции и скалярный — с точностью до производной по времени от той же функции.
В частности, к векторному потенциалу можно прибавить любой постоянный вектор, а к скалярному потенциалу — любую постоянную. Это видно и непосредственно из того, что в определение Е и Н входят только производные от А и ф, и потому прибавление к последним постоянных не влияет на напряженности поля.
Физический смысл имеют лишь те величины, которые инвариантны по отношению к преобразованию потенциалов (18,3);
поэтому все уравнения должны быть инвариантны по отношению к этому преобразованию. Эту инвариантность называют калибровочной или градиентной (по-немецки ее называют Eichinvarianz, по-английски — gauge invariance)1).
Описанная неоднозначность потенциалов дает всегда возможность выбрать их так, чтобы они удовлетворяли одному произвольному дополнительному условию, — одному, так как мы можем произвольно выбрать одну функцию f в (18,3). В частности, всегда можно выбрать потенциалы поля так, чтобы скалярный потенциал ф был равен нулю. Сделать же векторный потенциал равным нулю, вообще говоря, невозможно, так как условие А = 0 представляет собой три дополнительных условия Ддля трех компонент А).
§ 19. Постоянное электромагнитное поле
Постоянным электромагнитным полем мы называем поле, не зависящее от времени. Очевидно, что потенциалы постоянного поля можно выбрать так, чтобы они были функциями только от координат, но не от времени. Постоянное магнитное поле по-прежнему равно H = rotA. Постоянное же электрическое поле
Е = — gradq). (19,1)
Таким образом, постоянное электрическое поле определяется только скалярным потенциалом, а магнитное — векторным потенциалом.
Мы видели в -предыдущем параграфе, что потенциалы поля определены не однозначно. Легко, однако, убедиться в том, что если описывать постоянное электромагнитное поле с помощью не зависящих от времени потенциалов, то к скалярному потенциалу можно прибавить, не изменяя поля, лишь произвольную постоянную (не зависящую ни от координат, ни от времени). Обычно на ф накладывают еще дополнительное условие, требуя, чтобы он имел определенное значение в определенной точке пространства; чаще всего выбирают ф так,- чтобы он был равен нулю на бесконечности. Тогда и упомянутая произвольная постоянная становится определенной, и скалярный потенциал постоянного поля, таким образом, становится вполне однозначным.
Напротив, векторный потенциал по-прежнему не однозначен даже для постоянного электромагнитного поля; к нему можно прибавить градиент любой функции координат.
Определим, чему равна энергия заряда в постоянном электромагнитном поле. Если поле постоянно, то и функция Лагранжа
') Подчеркнем, что этот результат связан с подразумевающимся в (18,2) постоянством е. Таким образом, калибровочная инвариантность уравнений электродинамики и сохранение заряда тесно связаны друг с другом.
ПОСТОЯННОЕ ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ
77
для заряда не зависит.явно от времени. Как. известно, в этом случае энергия сохраняется, совпадая с функцией Гамильтона. Согласно (16,6) имеем:
*= ^f-r+ap. (19,2)
Таким образом, вследствие наличия поля к энергии частицы, прибавляется член eq> — потенциальная энергия заряда в поле. Отметим существенное обстоятельство, что энергия зависит только от скалярного, но не от векторного потенциала. Другими словами, магнитное поле не влияет на энергию зарядов; энергию частицы может изменить только электрическое поле. Это связано с тем, что магнитное поле, в противоположность электрическому, не производит над зарядом работы.
Если напряженность поля во всех точках пространства одинакова, то поле называют однородным. Скалярный потенциал однородного электрического поля может быть выражен через напряженность поля согласно равенству
Ф = -Ег. (19,3)
Действительно, при E = const имеем grad(Er) = (EV)r = Е.
Векторный же потенциал однородного магнитного поля выражается через напряженность этого поля Н в виде
А = у[Нг]. (19,4)
Действительно, при Н = const находим с помощью известных формул векторного анализа:
rot [Hr] = Н div г - (Н?) г = 2Н
(напомним, что divr = 3).
Векторный потенциал однородного магнитного поля можно выбрать я иначе, например, в виде
Л, = - Ну, Ау = Аг = 0 (19,5)
(ось г выбрана вдоль направления Н). Легко убедиться, что и при таком выборе А имеет место равенство Н = rot А. В соответствии с формулами преобразования (18,3) потенциалы (19,4) и (19,5) отличаются друг от друга градиентом некоторой функции: (19,5) получается из (19,4) прибавлением \f, где / = = —хуН/2.
Задача
Написать вариационный принцип для траектории частицы (принцип Мопертюи) в постоянном электромагнитном поле в релятивистской механике.
Решение. Принцип Мопертюи заключается в том, что если полная энергия частицы сохраняется (движение в постоянном поле), то ее траектория может быть определена из вариационного уравнения
6^ Prfr = 0,
'{т.
I
§ 44). Подставляя Р = р + — А и замечая,
что направления р и dr
6^
(prf/
+ yArfr)=0,
совпадают, имеем!
где dt = ifdr1 есть элемент дуги. Определяя р из р2 тгс% = {Ш т- etp)2/c2, находим окончательно:
& ^/\J-^-(S~e<ff-m1cidl + ~Adrj = 0.
§ Ш Движение в постоянном однородном электрическом поле
Рассмотрим движение заряда е в однородном постоянном электрическом поле Е. Направление поля примем за ось х. Движение будет, очевидно, происходить в одной плоскости, которую выберем за плоскость ху. Тогда уравнения движения (17,5) примут вид
рх = еЕ, ру = 0 (точка над буквой обозначает дифференцирование по t), откуда
px = eEi, р„ = р0. (20,1)
Начало отсчета времени мы выбрали в тот момент, когда рх = 0; Ро есть импульс частицы в этот момент.
Кинетическая энергия частицы (энергия без потенциальной энергии в поле) равна Smin = с *Jm2c2 -f- р2. Подставляя сюда (20,1), находим в нашем случае:
#кин = «Jm2c*+ cyQ + {ceEt? = ^8\ + (сеЕ1?, (20,2)
где <§Г0 — энергия при г = 0.
Согласно (9,8) скорость частицы v = рс2/ё?кан. Для скорости Vx «= х имеем, следовательно:
dx рхсг c2eEt
~ЗГ~~ ~~ + {ceEtf '
Интегрируя, находим:
x = -±-*J$20 + {ceEt? (20,3)
(постоянную интегрирования полагаем равной нулю)1).
') Этот результат (при р0 = 0) совпадает с решением задачи о релятивистском движении с постоянным «собственным ускорением» Wo «= еЕ/т (см. задачу к § 7). Постоянство этого ускорения связано в данном Случае с тем, что электрическое поле не меняется при преобразованиях Лоренца со скоростями V, направленными вдоль поля (см, § 24),
§21}
ДВИЖЕНИЕ В ОДНОРОДНОМ МАГНИТНОМ ПОЛЕ
79
Для определения у имеем:
йу р«с* Рос'
~2* #кин ~^t* + (ceEtf '
откуда
^IFArshif-. (20,4)
Уравнение траектории находим, выражая из (20,4) t через у и подставляя в (20,3). Это дает:
Таким образом, заряд движется в однородном электрическом поле по цепной линии.
Если скорость частицы и<с, то можно положить pQ = moo, &a — mcs\ разлагая (20,5) по степеням 1/с, получим, с точностью до членов высшего порядка:
X — -^5- у2 -f COTlst,
т. е. заряд движется по параболе, — результат, хорошо известный из классической механики.