
- •4 По. Излучение гравитационных волн .......... . 450
- •Глава I
- •§ 1. Скорость распространения взаимодействий
- •§ 2. Интервал
- •§ 3. Собственное время
- •§ 4. Преобразование Лоренца
- •§ 5. Преобразование скорости
- •§ 6. Четырехмерные векторы
- •1. Найти закон преобразования компонент симметричного 4-тензора л'* при преобразовании Лоренца (6,1).
- •2. То же для антисимметричного тензора л'*.
- •§ 7. Четырехмерная скорость
- •Глава II
- •§ 8, Принцип наименьшего действия
- •§ 9. Энергия и импульс
- •1) Таковы световые кванты — фотоны, а также, возможно, нейтрино.
- •§ 10] Преобразование функции распределения 49
- •§ 10. Преобразование функции распределения
- •1. Частица, движущаяся со скоростью V, распадается «на лету» на две частицы. Определить связь между углами вылета последних и их энергиями.
- •2. Найти распределение раеладных частиц по энергиям в л-системе.
- •3. Определить интервал значений, которые может принимать в л-си-стеме угол между двумя распадными частицами (угол разлета) при распаде на две одинаковые частицы.
- •4. Найти угловое распределение в л-системе для распадных частиц с массой, равной нулю.
- •4Я(1 — Ксозв)2 '
- •5. Найти, распределение по углам разлета в л-системе при распаде на две частицы с массами, равными нулю.
- •6. Определить наибольшую энергию, которую может унести одна из распадных частиц при распаде неподвижной частицы с массой м на три частицы mi, тг, т3.
- •§ 12. Инвариантное сечение
- •§ 13. Упругие столкновения частиц
- •§ 14. Момент импульса
- •Глава III
- •§ 15. Элементарные частицы в теории относительности
- •§ 16. Четырехмерный потенциал поля
- •§ 17. Уравнения движения заряда в поле
- •§ 18. Калибровочная инвариантность
- •§ 19. Постоянное электромагнитное поле
- •§ 21. Движение в постоянном однородном магнитном поле
- •§ 22. Движение заряда в постоянных однородных электрическом и магнитном полях
- •1. Определить релятивистское движение заряда в параллельных однородных электрическом и магнитном полях.
- •2. Определить релятивистское движение заряда во взаимно перпендикулярных и равных по величине электрическом и магнитном полях1).
- •3. Определить скорость дрейфа ведущего центра орбиты нерелятивистской заряженной частицы в квазиоднородном постоянном магнитном поле (я. Alfven, 1940).
- •§ 23. Тензор электромагнитного поля
- •§ 24. Преобразование Лоренца для поля
- •5 25] Инварианты поля 91
- •§ 25. Инварианты поля
- •Глава IV
- •§ 26. Первая пара уравнений Максвелла
- •1) Уравнения Максвелла — основные уравнения электродинамики — была впервые сформулированы Дж, Максвеллом в 1860-х годах.
- •§ 27. Действие для электромагнитного поля
- •8 28] Четырехмерный вектор тока 101
- •§ 29. Уравнение непрерывности
- •§ 30. Вторая пара уравнений Максвелла
- •§ 31. Плотность и поток анергии
- •§ 32. Тензор энергии-импульса
- •§ 33. Тензор энергии-импульса электромагнитного поля
- •Д (dAtfdx*) 4я '
- •§ 35. Тензор энергии-импульса макроскопических тел
- •Глава V
- •§ 36. Закон Кулона
- •§ 37. Электростатическая энергия зарядов
- •§ 38. Поле равномерно движущегося заряда
- •5 88] Поле равномерно движущегося заряда 129
- •§ 39] Движение в кулонов ом поле 131
- •2. Определить эффективное сечение рассеяния на малые углы при рас* сеянии частиц кулоновым полем.
- •§ 40. Дипольный момент
- •5 4!) Муяьтипьльные моменты |35
- •§ 41. Мультипольные моменты
- •2) В соответствии с определением, принятым в квантовой механике.
- •§ 42. Система зарядов во внешнем поле
- •§ 43. Постоянное магнитное поле
- •§ 44. Магнитный момент»
- •§ 45. Теорема Лармора
- •Глава VI
- •§ 46. Волновое уравнение
- •§ 47. Плоские волны
- •1. Определить силу, действующую на стенку, от которой отражается [(с коэффициентом отражения r) падающая на нее плоская электромагнит- ная волна.
- •2. Методом Гамильтона — Якоби определить движение заряда в поле плоской электромагнитной волны.
- •§ 48. Монохроматическая плоская волна
- •1. Определить направление и величину осей эллипса поляризации по комплексной амплитуде е0.
- •2. Определить движение заряда в поле плоской -монохроматической линейно поляризованной волны.
- •3. Определить движение заряда в поле поляризованной по кругу волны.
- •§ 49. Спектральное разложение
- •§ 50. Частично поляризованный свет
- •1. Разложить произвольный частично поляризованный свет на «естественную» и «поляризованную» части.
- •2) Для прямого доказательства замечаем, что поскольку поле волны
- •3. Найти закон преобразования параметров Стокса при повороте осей у, z на угол ф.
- •§ 51. Разложение электростатического поля
- •§ 52. Собственные колебания поля
- •Глава VII
- •§ 53. Геометрическая оптика
- •§ 55. Угловой эйконал
- •§ 56. Тонкие пучки лучей
- •1. Определить фокусное расстояние для отображения с помощью двух аксиально-симметричных оптических систем с совпадающими оптическими осями.
- •2. Определить фокусное расстояние «магнитной линзы» для заряженных частиц, представляющей собой продольное однородное магнитное поле в участке длины I (рис. 8) ').
- •§ 57. Отображение широкими пучками лучей
- •§ 58. Пределы геометрической оптики
- •§ 59. Дифракция
- •§ 59] Дифракция "j97
- •§ 60. Дифракция Френеля
- •§ 60] Дифракция френеля jq3
- •§ 61. Дифракция Фраунгофера
- •1. Определить дифракцию Фраунгофера при нормальном падении плоской волны на бесконечную щель (ширины 2а) с параллельными краями, прорезанную в непрозрачном экране.
- •Глава VIII
- •§ 62. Запаздывающие потенциалы
- •§ 63. Потенциалы Лиенара — Вихерта
- •§ 64. Спектральное разложение запаздывающих потенциалов
- •§ 65. Функция Лагранжа с точностью до членов второго порядка
- •1. Определить (с точностью до членов второго порядка) центр инерции системы взаимодействующих частиц.
- •2. Написать функцию Гамильтона во втором приближении для системы из двух частиц, исключив из нее движение системы как целого.
- •Глава IX
- •§ 66. Поле системы зарядов на далеких расстояниях
- •3) В формуле (63,8) для электрического поля рассматриваемому при- ближению соответствует пренебрежение первым членом по сравнению со вторым,
- •§66} Поле системы зарядов на далеких расстояниях
- •§ 67. Дипольное излучение
- •1. Определить излучение диполя d, вращающегося в одной плоскости с постоянной угловой скоростью q').
- •§ 68. Дипольное излучение при столкновениях
- •2) Фактически обычно речь идет о дипольном моменте двух частиц — рассеиваемой и рассеивающей — относительно их общего центра инерции.
- •§ 69. Тормозное излучение малых частот
- •2) Применимость формул, однако, ограничена квантовым условием малости йш по сравнению с полной кинетической энергией частицы.
- •§ 70. Излучение при кулоновом взаимодействии
- •1, Определить полную среднюю интенсивность излучения при эллиптическом движении двух притягивающихся зарядов.
- •2. Определить полное излучение bJ5 при столкновении двух заряженных частиц.
- •3. Определить полное эффективное излучение при рассеянии потока частиц в кулоновом поле отталкивания. Решение. Искомая величина есть
- •§ 71. Квадрупольное и магнитно-дипольное излучения
- •1. Вычислить полное эффективное излучение при рассеянии потока заряженных частиц одинаковыми с ними частицами.
- •2. Найти силу отдачи, действующую на излучающую систему частиц, со-вершающих стационарное финитное движение.
- •§ 72. Поле излучения на близких расстояниях
- •1. Определить потенциалы поля квадрупольного и магнитно-дипольного излучений на близких расстояниях.
- •Спектральные компоненты потенциалов квадрупольного излучения;
- •2. Найти скорость потери момента импульса системой зарядов при да-польном излучении ею электромагнитных волн.
- •1) Отличное от нуля значение Нп получилось бы лишь при учете членов высшего порядка по а//?0-
- •§ 73. Излучение быстро движущегося заряда
- •2. Определить направления, в которых обращается в нуль интенсивность излучения движущейся частицы.
- •3. Определить интенсивность излучения заряжен- рИс- 15 ной частицей, стационарно движущейся в поле цир-
- •4. То же в поле линейно поляризованной волны.
- •§ 74. Магнито-тормозное излучение
- •1, Определить закон изменения энергии со временем для заряда, движущегося по круговой орбите в постоянном однородном магнитном поле и теряющего энергию путем излучения.
- •2. Найти асимптотическую формулу для спектрального распределения излучения с большими значениями л для частицы, движущейся по окруж- ности со скоростью, не близкой к скорости света.
- •3. Найти поляризацию магнито-тормозного излучения.
- •§ 75. Торможение излучением
- •§ 76. Торможение излучением в релятивистском случае
- •Du1 е cik d2ul е dFik I , е2 с1кв I
- •2Es dFik „ „I 2e* вц r tik _, 2e* IV , д, pkm„ ) ц1
- •1. Определить предельную энергию, которой может обладать частица после пролета через поле магнитного диполя т; вектор ш и направление движения лежат в одной плоскости.
- •2. Написать трехмерное выражение для силы торможения в релятивистском случае.
- •§ 77. Спектральное разложение излучения в ультрарелятивистском случае
- •1. Определить спектральное распределение полной (по всем направлениям) интенсивности излучения при условии (77,2).
- •2. Определить спектральное распределение полной (по всем направлениям) излученной энергии при условии (77,4).
- •§ 78. Рассеяние свободными зарядами
- •4. Определить коэффициент деполяризации рассеянного света при рассея- нии естественного света свободным зарядом.
- •5. Определить частоту (ш') света, рассеянного движущимся зарядом. Решение. В системе координат, где заряд покоится, частота света
- •6. Определить угловое распределение рассеяния линейно поляризованной волны зарядом, движущимся с произвольной скоростью V в направлении распространения волны.
- •7. Определить движение заряда под влиянием средней силы, действующей на него со стороны рассеиваемой им волны.
- •8. Определить сечение рассеяния линейно поляризованной волны осциллятором, с учетом торможения излучением.
- •§ 79. Рассеяние волн с малыми частотами
- •§ 80. Рассеяние волн с большими частотами
- •Глава X
- •§ 81. Гравитационное поле в нерелятивистской механике
- •§ 82. Гравитационное поле в релятивистской механике
- •§ 83. Криволинейные координаты
- •ЕШт _ дх' дхк дх1 дхт prst дх'" дх,г дх'3 дх'*
- •§ 84.. Расстояния и промежутки времени
- •§ 85. Ковариантное дифференцирование
- •§ 86. Связь символов Кристоффеля с метрическим тензором
- •Xikil дх1 Smft1 tl «*т* ы дхС 1 k,u 1 l.Kl
- •§ 86] Символы кристоффеля и метрический тензор 315
- •§ 87. Движение частицы в гравитационном поле
- •§ 88. Постоянное гравитационное поле
- •2. Вывести принцип Ферма для распространения лучей в постоянном гравитационном поле.
- •§ 90. Уравнения электродинамики при наличии гравитационного поля
- •Глава XI
- •§ 91. Тензор кривизны
- •I. Определить относительное 4-ускорение двух частиц, движущихся по бесконечно близким геодезическим мировым линиям.
- •2. Записать уравнения Максвелла в пустоте для 4-потенциала в лорен* цевой калибровке.
- •§ 92. Свойства тензора кривизны
- •Riklm — gtnR"klitf
- •IkUm дх'п дхшдхк дхтдх1 '
- •3) Мы увидим ниже (§ 95), что этим свойством обладает тензор кри- визны для гравитационного поля в пустоте.
- •§ 92] Свойства тензора кривизны 343
- •§ 93. Действие для гравитационного поля
- •1_ Оо ав уй dggy dgpa
- •§ 94. Тензор энергии-импульса
- •§ 95. Уравнения Эйнштейна
- •2) Вариационный принцип для гравитационного поля указан Гильбертом (d, Hilbert, 1915).
- •§ 96. Псевдотензор энергии-импульса гравитационного поля
- •I6jife l а*' a*' j)
- •§ 97. Синхронная система отсчета
- •1. Найти вид разложения решения уравнений гравитационного поля в пустоте вблизи не особой, регулярной точки по времени.
- •3. Найти общий вид бесконечно малого преобразования, не нарушающего синхронности системы отсчета.
- •§ 98. Тетрадное представление уравнений Эйнштейна
- •Глава XII
- •§ 99. Закон Ньютона
- •2) Потенциал поля внутри однородного шара радиуса а:
- •1. Найти инварианты тензора кривизны для метрики Шварцшильда (100,14).
- •3. Определить форму поверхности вращения, на которой геометрия была бы такой же, как на проходящей через начало координат «плоскости» в центрально-симметричном гравитационном поле в пустоте.
- •4. Преобразовать интервал (100,14) к координатам, в которых пространственная метрика имела бы конформно-эвклидов вид (т. Е. Dl2 пропорционально своему евклидову выражению).
- •5. Получить уравнения центрально-симметричного гравитационного поля в веществе в сопутствующей системе отсчета.
- •6, Найти уравнения, определяющие статическое гравитационное поле в пустоте вокруг неподвижного аксиально-симметричного тела (-#. Weyl, 1917),
- •§ 101. Движение в центрально-симметричном гравитационном поле
- •§ 102. Гравитационный коллапс сферического тела
- •V ygoadt /
- •1. Для частицы в поле коллапсара найти радиусы круговых орбит (с. А. Каплан, 1949).
- •2. Для движения в том же поле определить сечение гравитационного захвата падающих на бесконечности: а) нерелятивистских, б) ультрарелятивистских частиц (я. Б. Зельдович, и. Д. Новиков, 1964).
- •§ 103. Гравитационный коллапс пылевидной сферы
- •§ 104. Гравитационный коллапс несферических и вращающихся тел
- •1. Произвести разделение переменных в уравнении Гамильтона — Якоби для частицы, движущейся в поле Керра (в. Carter, 1968). Решение. В уравнении Гамильтона — Якоби
- •§ 105. Гравитационное поле вдали от тел
- •2. Определить систематическое (вековое) смещение орбиты частицы, движущейся в поле центрального тела, связанное с вращением последнего (/. Lense, н. Thirring, 1918).
- •§ 106. Уравнения движения системы тел во втором приближении
- •1. Определить действие для гравитационного поля в ньютоновском приближении.
- •Глава XIII
- •§ 107. Слабые гравитационные волны
- •§ 108. Гравитационные волны в искривленном пространстве-времени
- •§ 109. Сильная гравитационная волна
- •§ 110. Излучение гравитационных волн
- •51»! , Излучение гравитационных волн 45j
- •2. Найти среднюю (по периоду обращения) энергию, излучаемую в виде гравитационных волн системой двух тел, движущихся по эллиптическим орбитам (р. С. Peters, I. Mathews1)).
- •3. Определить среднюю (по времени) скорость потери момента импульса системой стационарно движущихся тел, испускающей гравитационные волны.
- •4. Для системы двух тел, движущихся по эллиптическим орбитам, найти средний теряемый ею в единицу времени момент импульса.
- •Глава XIV
- •§ 111. Изотропное пространство
- •§ 112. Закрытая изотропная модель
- •D0 1 d 8jtfe то
- •§ 113. Открытая изотропная модель
- •§ 114. Красное смещение
- •§ 115. Гравитационная устойчивость изотропного мира
- •§ 116. Однородные пространства
- •§ 117. Плоская анизотропная модель
- •§ 118. Колебательный режим приближения к особой точке
- •§ 119. Особенность по времени в общем космологическом решении уравнений Эйнштейна
- •Реперные 377, 483 Волновая зона 227 Волновой вектор 156, 158
- •Пакет 177
- •Магнитная 189 Лоренцева калибровка 150, 338
- •Сила 73
- •Отдачи при излучении 251
- •Торможения излучением 269, 274, 284, 456
- •Лагранжа 44, 70, 293, 319
- •Эйри 201, 264
§ 119. Особенность по времени в общем космологическом решении уравнений Эйнштейна
')
Если «начальное» значение параметра
и
есть
«о = + *о (где — целое число, а х0
<
1),
то длина первой серии колебаний будет
kB,
а
начальное значение и
для
следующей серии будет U\
=
1/х0
= ki
+
*j
и
т. д. Отсюда легко заключить, что
длины последовательных серий даются
элементами ke,
k\, k3,
...
разложения u0
в
бесконечную (при иррациональном u^l
непрерывную
дробь
"о
= *о -I ; •
Чередование
значений дальних элементов такого
разложения подчинено статистическим
закономерностям.
Независимость от специфических предположений означала бы, что наличие особенности присуще не только частным, но в общему решению уравнений Эйнштейна. Критерием общности является число содержащихся в решении «физически произвольных» функций. В общем решении число таких функций должао быть достаточным для произвольного задания начальных условий в какой-либо выбранный момент времени (4 для пустого пространства,. 8 для пространства, заполненного материей,— см. § 95)1).
Нахождение общего решения в точном виде для всего пространства в течение всего времени, разумеется, невозможно. Но для решения поставленного вопроса в этом нет необходимости: достаточно исследовать вид решения вблизи особенности.
Особенность, которую имеет решение Фридмана, характерна тем, что обращение в нуль пространственных расстояний происходит по одинаковому закону во всех направлениях. Такой тип особенности не является достаточно общим: он свойствен классу решений, содержащему лишь три произвольные функции координат (см. задачу к § 113). Отметим также, что эти решения существуют только для пространства, заполненного материей,
Особенность же колебательного типа, рассмотренная в предыдущем параграфе, имеет общий характер — существует решение уравнений Эйштейна с такой особенностью, содержащее всю требуемую совокупность произвольных функций.'Мы обрисуем здесь кратко способ построения такого решения, не вникая в детали вычислений г).
Как и в однородной модели (§ 118), режим приближения к особой точке в общем решении складывается из чередующихся
') Сразу же подчеркнем, однако, что для системы нелинейных дифференциальных уравнений, которую представляют собой уравнения Эйнштейна, понятие общего решения не однозначно. В принципе может существовать более чем один общий интеграл, каждый из которых охватывает совой ее все многообразие мыслимых начальных условий, а лишь его конечную часть. Существование общего решения с особенностью не исключает поэтому наличия также и других общих решений, не обладающих особенность». Например, нет оснований сомневаться в существовании общего решеиия без особенности, описывающего устойчивое изолированно* тело с не слишком большой массой.
г\ Их можно найти в статье: В. А. Белинский, Е. М. Лифшиц, И. М. Халатников, ЖЭТФ 62, 1606 (1972); Adv. in Phys. 31, 63» (1982).
серий сменяющих друг друга «казнеровских эпох». В течение каждой такой эпохи главные (по 1/г) члены в пространственном метрическом тензоре (в синхронной системе отсчета) имеют вид (118,1) с функциями времени а, Ь, с из (118,10), но векторы 1, m, п являются теперь произвольными (а не вполне определенными, как в однородном модели) функциями пространственных координат. Такими же функциями (а не просто числами) являются теперь показатели pi, рт, рп, по-прежнему связанные друг с другом соотношениями (118,11). Построенная таким образом метрика удовлетворяет уравнениям /?о = 0 и /?а = 0 для поля в пустоте (в их главных членах) в течение некоторого конечного интервала времени. Уравнения же /?а = 0 приводят к трем соотношениям (не содержащим времени), которые должны быть наложены на содержащиеся в у„з произвольные функции пространственных координат. Эти соотношения связывают между собой 10 различных функций: по три компоненты трех векторов 1, m, п и одна функция в показателях степеней времени (какая-либо из трех функций pi, рт, рп, связанных двумя условиями (118,11)). При определении числа физически произвольных функций надо учесть также, что синхронная система отсчета допускает еще произвольные преобразования трех пространственных координат, не затрагивающие времени. Поэтому метрика содержит всего 10 — 3 — 3 = 4 произвольные функции— именно столько, сколько должно быть в общем решении для поля в пустоте.
Смена одной казнеровской эпохи на другую происходит (как ив однородной модели) благодаря наличию в трех из шести уравнений Ri = 0 членов, которые при уменьшении / растут быстрее других, играя, таким образом, роль возмущения, разрушающего казнеровский режим. Эти уравнения в общем случае имеют вид, отличающийся от уравнений (118,14) лишь зависящим от пространственных координат множителем (I rot 1/1 [mn] )2 в их правых сторонах (подразумевается, что из трех показателей pi, рт, рп отрицателен pi)1). Поскольку, однако, уравнения (118,14) составляют систему обыкновенных дифференциальных уравнений по отношению ко времени, это отличие никак не сказывается на их решении и на следующем из этого решения законе смены казнеровских показателей (118,16), а тем самым — и на всех дальнейших следствиях, изложенных в § 1182).
') Для однородной модели этот множитель совпадает с квадратом структурной константы С" и по определению постоянен.
s) Если наложить на произвольные функции в решении дополнительное условие 1 rot 1 = 0, то колебания исчезнут и казнеровский режим будет продолжаться до самой точки t = 0. Такое решение, однако, содержит на одну произвольную функцию меньше, чем требуется в общем случае.
Si 19] ОСОБЕННОСТЬ В ОБЩЕМ РЕШЕНИИ ЭЙНШТЕЙНА 505
Степень общности решения не уменьшается при введении материи: материя «вписывается» в метрику со всеми вносимыми ею 4 новыми координатными функциями, необходимыми для задания начальных распределений ее плотности и трех компонент скорости. Тензор энергии-импульса материи Г? привносит в уравнения поля члены, оказывающиеся более высокого порядка по l/t, чем главные члены (в точности аналогично тому, как это было показано в задаче 3 к § 117 для плоской однородной модели).
Таким образом, существование особой точки по времени является весьма общим свойством решений уравнений Эйнштейна, причем, режим приближения к особой точке имеет в общем случае колебательный характер1). Подчеркнем, что этот характер не связан с наличием материи (а потому и с ее уравнением состояния) и свойствен уже самому по себе пустому пространству-времени. Зависящая же от присутствия материи особенность монотонного изотропного типа, свойственная решению Фридмана, имеет лишь частное значение.
Говоря об особенностях в космологическом аспекте, мы имеем в виду особую точку, достигаемую всем пространством, а не лишь его ограниченной частью, как при гравитационном коллапсе конечного тела. Но общность колебательного решения дает основание полагать, что такой же характер имеет и особенность, достигаемая конечным телом в его коллапсе под горизонтом событий в сопутствующей системе отсчета.
Мы везде говорили о направлении приближения к особой точке как о направлении уменьшения времени; но ввиду симметрии уравнений Эйнштейна по отношению к изменению знака времени, с тем же правом могла бы идти речь о приближении к особенности в направлении увеличения времени. В действительности, однако, ввиду физической неэквивалентности будущего и прошедшего между этими двумя случаями имеется существенное отличие в отношении самой постановки вопроса. Особенность в будущем может иметь физический смысл, лишь если она допустима при произвольных начальных условиях, задаваемых в какой-либо предшествующий момент времени. Ясно, что нет никаких оснований для того, чтобы распределение материи и поля, достигаемое в какой-либо момент в процессе эволюции Вселенной, соответствовало бы специфическим условиям, требуемым для осуществления того или иного частного решения уравнений Эйнштейна.
') Факт существования особой точки в общем решении уравнений Эйнштейна был впервые доказан Пенроузом {R. Penrose, 1965) топологическими методами, которые, однако, не дают возможности установить конкретный аналитический характер особенности. Изложение этих методов и полученных с их помощью теорем см. Р. Пенроуз, Структура пространства-времени, «Мир», 1972.
506
РЕЛЯТИВИСТСКАЯ космология
(гл. >:;v
На вопрос же о типе особенности в прошлом исследование, основанное на одних лишь уравнениях гравитации," вряд ли вообще может дать однозначный ответ. Естественно думать, что отбор решения, отвечающего реальному миру, связан с какими-то глубокими физическими требованиями, установление которых на основании одной лишь существующей теории гравитации невозможно, и которые смогут быть выяснены лишь в результате дальнейшего синтеза физических теорий. В этом смысле в принципе может оказаться, что этому отбору соответствует какой-либо частный (например, изотропный) тип особенности.
Наконец, небоходимо сделать еще следующее замечание. Область применимости уравнений Эйнштейна самих по себе никак не ограничена со стороны малых расстояний или больших плотностей материи в том смысле, что уравнения не приводят в этом пределе ни к каким внутренним противоречиям (в отличие, например, от классических уравнений электродинамики). В этом смысле исследование особенностей пространственно-временной метрики на базе уравнений Эйнштейна вполне корректно. Нет сомнений, однако, в том, что в действительности в указанном пределе должны стать существенными квантовые явления, о которых при современном состоянии теорий мы еще ничего не можем сказать. Лишь в будущем Синтезе теории тяготения и квантовой теории сможет выясниться, что именно из результатов классической теории сохранит реальный смысл. В то же время нет сомнений и в том, что самый факт возникновения особенностей в решениях уравнений Эйнштейна (как в космологическом аспекте, так и для коллапса конечных тел) нмеет глубокий физический смысл. Не надо забывать и о том, что достижение в процессе гравитационного коллапса уже тех огромных плотностей, при которых еще нет оснований для сомнений в законности классической теории тяготения, достаточны для того, чтобы говорить о физически «особом» явлении.
ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ1)
Аберрация света 29 Адиабатические инварианты 81 Астигматизм 185
Бианки, типы пространства 491
Вековое смещение орбиты 396, 430, 438
Вектор Герца 252
— Пойнтинга 107
Векторы аксиальные, полярные 36
— ковариантные, контравариантные 31, 298