
- •4 По. Излучение гравитационных волн .......... . 450
- •Глава I
- •§ 1. Скорость распространения взаимодействий
- •§ 2. Интервал
- •§ 3. Собственное время
- •§ 4. Преобразование Лоренца
- •§ 5. Преобразование скорости
- •§ 6. Четырехмерные векторы
- •1. Найти закон преобразования компонент симметричного 4-тензора л'* при преобразовании Лоренца (6,1).
- •2. То же для антисимметричного тензора л'*.
- •§ 7. Четырехмерная скорость
- •Глава II
- •§ 8, Принцип наименьшего действия
- •§ 9. Энергия и импульс
- •1) Таковы световые кванты — фотоны, а также, возможно, нейтрино.
- •§ 10] Преобразование функции распределения 49
- •§ 10. Преобразование функции распределения
- •1. Частица, движущаяся со скоростью V, распадается «на лету» на две частицы. Определить связь между углами вылета последних и их энергиями.
- •2. Найти распределение раеладных частиц по энергиям в л-системе.
- •3. Определить интервал значений, которые может принимать в л-си-стеме угол между двумя распадными частицами (угол разлета) при распаде на две одинаковые частицы.
- •4. Найти угловое распределение в л-системе для распадных частиц с массой, равной нулю.
- •4Я(1 — Ксозв)2 '
- •5. Найти, распределение по углам разлета в л-системе при распаде на две частицы с массами, равными нулю.
- •6. Определить наибольшую энергию, которую может унести одна из распадных частиц при распаде неподвижной частицы с массой м на три частицы mi, тг, т3.
- •§ 12. Инвариантное сечение
- •§ 13. Упругие столкновения частиц
- •§ 14. Момент импульса
- •Глава III
- •§ 15. Элементарные частицы в теории относительности
- •§ 16. Четырехмерный потенциал поля
- •§ 17. Уравнения движения заряда в поле
- •§ 18. Калибровочная инвариантность
- •§ 19. Постоянное электромагнитное поле
- •§ 21. Движение в постоянном однородном магнитном поле
- •§ 22. Движение заряда в постоянных однородных электрическом и магнитном полях
- •1. Определить релятивистское движение заряда в параллельных однородных электрическом и магнитном полях.
- •2. Определить релятивистское движение заряда во взаимно перпендикулярных и равных по величине электрическом и магнитном полях1).
- •3. Определить скорость дрейфа ведущего центра орбиты нерелятивистской заряженной частицы в квазиоднородном постоянном магнитном поле (я. Alfven, 1940).
- •§ 23. Тензор электромагнитного поля
- •§ 24. Преобразование Лоренца для поля
- •5 25] Инварианты поля 91
- •§ 25. Инварианты поля
- •Глава IV
- •§ 26. Первая пара уравнений Максвелла
- •1) Уравнения Максвелла — основные уравнения электродинамики — была впервые сформулированы Дж, Максвеллом в 1860-х годах.
- •§ 27. Действие для электромагнитного поля
- •8 28] Четырехмерный вектор тока 101
- •§ 29. Уравнение непрерывности
- •§ 30. Вторая пара уравнений Максвелла
- •§ 31. Плотность и поток анергии
- •§ 32. Тензор энергии-импульса
- •§ 33. Тензор энергии-импульса электромагнитного поля
- •Д (dAtfdx*) 4я '
- •§ 35. Тензор энергии-импульса макроскопических тел
- •Глава V
- •§ 36. Закон Кулона
- •§ 37. Электростатическая энергия зарядов
- •§ 38. Поле равномерно движущегося заряда
- •5 88] Поле равномерно движущегося заряда 129
- •§ 39] Движение в кулонов ом поле 131
- •2. Определить эффективное сечение рассеяния на малые углы при рас* сеянии частиц кулоновым полем.
- •§ 40. Дипольный момент
- •5 4!) Муяьтипьльные моменты |35
- •§ 41. Мультипольные моменты
- •2) В соответствии с определением, принятым в квантовой механике.
- •§ 42. Система зарядов во внешнем поле
- •§ 43. Постоянное магнитное поле
- •§ 44. Магнитный момент»
- •§ 45. Теорема Лармора
- •Глава VI
- •§ 46. Волновое уравнение
- •§ 47. Плоские волны
- •1. Определить силу, действующую на стенку, от которой отражается [(с коэффициентом отражения r) падающая на нее плоская электромагнит- ная волна.
- •2. Методом Гамильтона — Якоби определить движение заряда в поле плоской электромагнитной волны.
- •§ 48. Монохроматическая плоская волна
- •1. Определить направление и величину осей эллипса поляризации по комплексной амплитуде е0.
- •2. Определить движение заряда в поле плоской -монохроматической линейно поляризованной волны.
- •3. Определить движение заряда в поле поляризованной по кругу волны.
- •§ 49. Спектральное разложение
- •§ 50. Частично поляризованный свет
- •1. Разложить произвольный частично поляризованный свет на «естественную» и «поляризованную» части.
- •2) Для прямого доказательства замечаем, что поскольку поле волны
- •3. Найти закон преобразования параметров Стокса при повороте осей у, z на угол ф.
- •§ 51. Разложение электростатического поля
- •§ 52. Собственные колебания поля
- •Глава VII
- •§ 53. Геометрическая оптика
- •§ 55. Угловой эйконал
- •§ 56. Тонкие пучки лучей
- •1. Определить фокусное расстояние для отображения с помощью двух аксиально-симметричных оптических систем с совпадающими оптическими осями.
- •2. Определить фокусное расстояние «магнитной линзы» для заряженных частиц, представляющей собой продольное однородное магнитное поле в участке длины I (рис. 8) ').
- •§ 57. Отображение широкими пучками лучей
- •§ 58. Пределы геометрической оптики
- •§ 59. Дифракция
- •§ 59] Дифракция "j97
- •§ 60. Дифракция Френеля
- •§ 60] Дифракция френеля jq3
- •§ 61. Дифракция Фраунгофера
- •1. Определить дифракцию Фраунгофера при нормальном падении плоской волны на бесконечную щель (ширины 2а) с параллельными краями, прорезанную в непрозрачном экране.
- •Глава VIII
- •§ 62. Запаздывающие потенциалы
- •§ 63. Потенциалы Лиенара — Вихерта
- •§ 64. Спектральное разложение запаздывающих потенциалов
- •§ 65. Функция Лагранжа с точностью до членов второго порядка
- •1. Определить (с точностью до членов второго порядка) центр инерции системы взаимодействующих частиц.
- •2. Написать функцию Гамильтона во втором приближении для системы из двух частиц, исключив из нее движение системы как целого.
- •Глава IX
- •§ 66. Поле системы зарядов на далеких расстояниях
- •3) В формуле (63,8) для электрического поля рассматриваемому при- ближению соответствует пренебрежение первым членом по сравнению со вторым,
- •§66} Поле системы зарядов на далеких расстояниях
- •§ 67. Дипольное излучение
- •1. Определить излучение диполя d, вращающегося в одной плоскости с постоянной угловой скоростью q').
- •§ 68. Дипольное излучение при столкновениях
- •2) Фактически обычно речь идет о дипольном моменте двух частиц — рассеиваемой и рассеивающей — относительно их общего центра инерции.
- •§ 69. Тормозное излучение малых частот
- •2) Применимость формул, однако, ограничена квантовым условием малости йш по сравнению с полной кинетической энергией частицы.
- •§ 70. Излучение при кулоновом взаимодействии
- •1, Определить полную среднюю интенсивность излучения при эллиптическом движении двух притягивающихся зарядов.
- •2. Определить полное излучение bJ5 при столкновении двух заряженных частиц.
- •3. Определить полное эффективное излучение при рассеянии потока частиц в кулоновом поле отталкивания. Решение. Искомая величина есть
- •§ 71. Квадрупольное и магнитно-дипольное излучения
- •1. Вычислить полное эффективное излучение при рассеянии потока заряженных частиц одинаковыми с ними частицами.
- •2. Найти силу отдачи, действующую на излучающую систему частиц, со-вершающих стационарное финитное движение.
- •§ 72. Поле излучения на близких расстояниях
- •1. Определить потенциалы поля квадрупольного и магнитно-дипольного излучений на близких расстояниях.
- •Спектральные компоненты потенциалов квадрупольного излучения;
- •2. Найти скорость потери момента импульса системой зарядов при да-польном излучении ею электромагнитных волн.
- •1) Отличное от нуля значение Нп получилось бы лишь при учете членов высшего порядка по а//?0-
- •§ 73. Излучение быстро движущегося заряда
- •2. Определить направления, в которых обращается в нуль интенсивность излучения движущейся частицы.
- •3. Определить интенсивность излучения заряжен- рИс- 15 ной частицей, стационарно движущейся в поле цир-
- •4. То же в поле линейно поляризованной волны.
- •§ 74. Магнито-тормозное излучение
- •1, Определить закон изменения энергии со временем для заряда, движущегося по круговой орбите в постоянном однородном магнитном поле и теряющего энергию путем излучения.
- •2. Найти асимптотическую формулу для спектрального распределения излучения с большими значениями л для частицы, движущейся по окруж- ности со скоростью, не близкой к скорости света.
- •3. Найти поляризацию магнито-тормозного излучения.
- •§ 75. Торможение излучением
- •§ 76. Торможение излучением в релятивистском случае
- •Du1 е cik d2ul е dFik I , е2 с1кв I
- •2Es dFik „ „I 2e* вц r tik _, 2e* IV , д, pkm„ ) ц1
- •1. Определить предельную энергию, которой может обладать частица после пролета через поле магнитного диполя т; вектор ш и направление движения лежат в одной плоскости.
- •2. Написать трехмерное выражение для силы торможения в релятивистском случае.
- •§ 77. Спектральное разложение излучения в ультрарелятивистском случае
- •1. Определить спектральное распределение полной (по всем направлениям) интенсивности излучения при условии (77,2).
- •2. Определить спектральное распределение полной (по всем направлениям) излученной энергии при условии (77,4).
- •§ 78. Рассеяние свободными зарядами
- •4. Определить коэффициент деполяризации рассеянного света при рассея- нии естественного света свободным зарядом.
- •5. Определить частоту (ш') света, рассеянного движущимся зарядом. Решение. В системе координат, где заряд покоится, частота света
- •6. Определить угловое распределение рассеяния линейно поляризованной волны зарядом, движущимся с произвольной скоростью V в направлении распространения волны.
- •7. Определить движение заряда под влиянием средней силы, действующей на него со стороны рассеиваемой им волны.
- •8. Определить сечение рассеяния линейно поляризованной волны осциллятором, с учетом торможения излучением.
- •§ 79. Рассеяние волн с малыми частотами
- •§ 80. Рассеяние волн с большими частотами
- •Глава X
- •§ 81. Гравитационное поле в нерелятивистской механике
- •§ 82. Гравитационное поле в релятивистской механике
- •§ 83. Криволинейные координаты
- •ЕШт _ дх' дхк дх1 дхт prst дх'" дх,г дх'3 дх'*
- •§ 84.. Расстояния и промежутки времени
- •§ 85. Ковариантное дифференцирование
- •§ 86. Связь символов Кристоффеля с метрическим тензором
- •Xikil дх1 Smft1 tl «*т* ы дхС 1 k,u 1 l.Kl
- •§ 86] Символы кристоффеля и метрический тензор 315
- •§ 87. Движение частицы в гравитационном поле
- •§ 88. Постоянное гравитационное поле
- •2. Вывести принцип Ферма для распространения лучей в постоянном гравитационном поле.
- •§ 90. Уравнения электродинамики при наличии гравитационного поля
- •Глава XI
- •§ 91. Тензор кривизны
- •I. Определить относительное 4-ускорение двух частиц, движущихся по бесконечно близким геодезическим мировым линиям.
- •2. Записать уравнения Максвелла в пустоте для 4-потенциала в лорен* цевой калибровке.
- •§ 92. Свойства тензора кривизны
- •Riklm — gtnR"klitf
- •IkUm дх'п дхшдхк дхтдх1 '
- •3) Мы увидим ниже (§ 95), что этим свойством обладает тензор кри- визны для гравитационного поля в пустоте.
- •§ 92] Свойства тензора кривизны 343
- •§ 93. Действие для гравитационного поля
- •1_ Оо ав уй dggy dgpa
- •§ 94. Тензор энергии-импульса
- •§ 95. Уравнения Эйнштейна
- •2) Вариационный принцип для гравитационного поля указан Гильбертом (d, Hilbert, 1915).
- •§ 96. Псевдотензор энергии-импульса гравитационного поля
- •I6jife l а*' a*' j)
- •§ 97. Синхронная система отсчета
- •1. Найти вид разложения решения уравнений гравитационного поля в пустоте вблизи не особой, регулярной точки по времени.
- •3. Найти общий вид бесконечно малого преобразования, не нарушающего синхронности системы отсчета.
- •§ 98. Тетрадное представление уравнений Эйнштейна
- •Глава XII
- •§ 99. Закон Ньютона
- •2) Потенциал поля внутри однородного шара радиуса а:
- •1. Найти инварианты тензора кривизны для метрики Шварцшильда (100,14).
- •3. Определить форму поверхности вращения, на которой геометрия была бы такой же, как на проходящей через начало координат «плоскости» в центрально-симметричном гравитационном поле в пустоте.
- •4. Преобразовать интервал (100,14) к координатам, в которых пространственная метрика имела бы конформно-эвклидов вид (т. Е. Dl2 пропорционально своему евклидову выражению).
- •5. Получить уравнения центрально-симметричного гравитационного поля в веществе в сопутствующей системе отсчета.
- •6, Найти уравнения, определяющие статическое гравитационное поле в пустоте вокруг неподвижного аксиально-симметричного тела (-#. Weyl, 1917),
- •§ 101. Движение в центрально-симметричном гравитационном поле
- •§ 102. Гравитационный коллапс сферического тела
- •V ygoadt /
- •1. Для частицы в поле коллапсара найти радиусы круговых орбит (с. А. Каплан, 1949).
- •2. Для движения в том же поле определить сечение гравитационного захвата падающих на бесконечности: а) нерелятивистских, б) ультрарелятивистских частиц (я. Б. Зельдович, и. Д. Новиков, 1964).
- •§ 103. Гравитационный коллапс пылевидной сферы
- •§ 104. Гравитационный коллапс несферических и вращающихся тел
- •1. Произвести разделение переменных в уравнении Гамильтона — Якоби для частицы, движущейся в поле Керра (в. Carter, 1968). Решение. В уравнении Гамильтона — Якоби
- •§ 105. Гравитационное поле вдали от тел
- •2. Определить систематическое (вековое) смещение орбиты частицы, движущейся в поле центрального тела, связанное с вращением последнего (/. Lense, н. Thirring, 1918).
- •§ 106. Уравнения движения системы тел во втором приближении
- •1. Определить действие для гравитационного поля в ньютоновском приближении.
- •Глава XIII
- •§ 107. Слабые гравитационные волны
- •§ 108. Гравитационные волны в искривленном пространстве-времени
- •§ 109. Сильная гравитационная волна
- •§ 110. Излучение гравитационных волн
- •51»! , Излучение гравитационных волн 45j
- •2. Найти среднюю (по периоду обращения) энергию, излучаемую в виде гравитационных волн системой двух тел, движущихся по эллиптическим орбитам (р. С. Peters, I. Mathews1)).
- •3. Определить среднюю (по времени) скорость потери момента импульса системой стационарно движущихся тел, испускающей гравитационные волны.
- •4. Для системы двух тел, движущихся по эллиптическим орбитам, найти средний теряемый ею в единицу времени момент импульса.
- •Глава XIV
- •§ 111. Изотропное пространство
- •§ 112. Закрытая изотропная модель
- •D0 1 d 8jtfe то
- •§ 113. Открытая изотропная модель
- •§ 114. Красное смещение
- •§ 115. Гравитационная устойчивость изотропного мира
- •§ 116. Однородные пространства
- •§ 117. Плоская анизотропная модель
- •§ 118. Колебательный режим приближения к особой точке
- •§ 119. Особенность по времени в общем космологическом решении уравнений Эйнштейна
- •Реперные 377, 483 Волновая зона 227 Волновой вектор 156, 158
- •Пакет 177
- •Магнитная 189 Лоренцева калибровка 150, 338
- •Сила 73
- •Отдачи при излучении 251
- •Торможения излучением 269, 274, 284, 456
- •Лагранжа 44, 70, 293, 319
- •Эйри 201, 264
§ 10. Преобразование функции распределения
В различных физических вопросах приходится иметь дело с пучками частиц, обладающих различными импульсами. Состав такого пучка, его импульсный спектр, характеризуется функцией распределения частиц по импульсам: f(p)dpxdpydpz есть доля числа частиц, обладающих импульсами с компонентами в заданных интервалах dpx, dpg, 4рг (или, как говорят для краткости, число частиц в заданном элементе объема d3p=dpxdpydpz «импульсного пространства»). В связи с этим возникает вопрос о законе преобразования функции распределения /(р) от одной системы отсчета к другой.
Для решения этого вопроса выясним предварительно свойства «элемента объема» dpxdpydpz по отношению к преобразованию Лоренца. Если ввести четырехмерную систему координат, на осях которой откладываются четыре компоненты 4-импульса частицы, то dpxdpydpz можно рассматривать как нулевую компоненту элемента гиперповерхности, определяемой уравнением p'pi = mtc2. Элемент гиперповерхности есть 4-вектор, направленный по нормали к ней; в данном случае направление нормали совпадает, очевидно, с направлением 4-вектора ри Отсюда следует, что отношение
dpx dpy dpz
(10,1)
как отношение одинаковых компонент двух параллельных 4-век-торов, есть величина инвариантная1).
Очевидным инвариантом является также доля числа частиц fdpxdpydpz, не зависящая от выбора системы отсчета. Написав ее в виде
f(p)*
dpx dpa dpz
и учитывая инвариантность отношения (10,1), мы приходим к выводу об инвариантности произведения Отсюда следует,
что функция распределения в системе К' связана с функцией распределения в системе К соотношением
Пр')==Ш*, (W|2)
причем р и & должны быть выражены через р' и §' с помощью формул преобразования (9,15).
Вернемся к инвариантному выражению (10,1). Если ввести «сферические координаты» в импульсном пространстве, то элемент объема dpxdpydpz заменится на р2 dp do, где do — элемент телесного .угла для направлений вектора р. Замечая, что pdp = *=<SdS/с2 (согласно (9,6)), имеем:
')
Интегрирование по элементу (10.1)
может
быть представлено в
четырехмерном
виде с помощью б-функции (см. примечание
на стр. 100)
как
интегрирование по
j6(pip{-mV)d*p,
d*p = dp*dpldp3dp\ (Ifl.la)
При
этом четыре компоненты р*
рассматриваются
как независимые переменные (причем
р° пробегает лишь положительные
значения). Формула (10,1аХ
очевидна
из следующего представления фигурирующей
в ней б-функции:
6
(Р%
- «v)
=
б (pi
-
-5)
-
jl
[б
(Ро+£.)
+ б (Ро
- £.)],
(юлб)
где
Ш
=
с Vp2
+
от2с2»
В
свою
очередь эта формула следует из формулы
(8},'приведенной в примечании на стр.
100.
Таким образом, находим, что инвариантно также и выражение
pd&do. (10,3)
В другом аспекте понятие о функции распределения фигурирует в кинетической теории газов: произведение /(г, p)dpxdpydpzdV есть число частиц, находящихся в заданном элементе объема dV и обладающих импульсами в заданных интервалах dpx, dpy, dp* Функцию /(г, р) называют функцией распределения в фазовом пространстве (пространство координат и импульсов частицы), а произведение дифференциалов dx — d3p dV — элементом объема этого пространства. Выясним закон преобразования этой функции.
Введем наряду с двумя системами отсчета К я К' еще и си- стему Ко, в которой частицы с рассматриваемым импульсом покоятся; именно по отношению к этой системе определяется собственный объем dVo элемента, занимаемого данными части- цами. Скорости систем К я К' относительно системы К0 совпа- дают, по определению, со скоростями v и v', которыми обла- дают эти частицы в системах К и К'. Согласно (4,6) имеем поэтому:
dV = dVuAj\-^r, dV^dV^l^^,
откуда
dV ЯГ
dV & *
Перемножив это равенство с равенством d3p/d3p''== &f<§', найдем, что
dx = dx,i (10,4)
т. е. элемент фазового объема инвариантен. Поскольку инвариантом является, по определению, также и число частиц fdx, то мы приходим к выводу об инвариантности функции распределения в фазовом пространстве:
Г(г',р/) = /(г,р), (:о,5)
где г', р' связаны с г, р формулами преобразования Лоренца. § II. Распад частиц
Рассмотрим самопроизвольный распад тела е массой М на две части с массами nil и Закон сохранения энергии при распаде, применённый в системе отсчета, в которой тело покоится, дает 1):
M = Sw + &mt (Utl)
') В § 11—13 полагаем с — 1. Другими словами, скорость света выбирается в качестве единицы измерения скоростей (при этой размерности длины и времени становятся одинаковыми). Такой выбор является естественным в релятивистской механике и очень упрощает запись формул. Однако где и о2о— энергии разлетающихся частей. Посколь-
ку If к) > mi и If го > т2, то равенство (11,1) может выполняться лишь, если М > mi + т2, т. е. тело может самопроизвольно распадаться на части, сумма масс которых меньше массы тела. Напротив, если М <; тх -f- т2, то тело устойчиво (по отношению к данному распаду) и самопроизвольно не распадается. Для осуществления распада надо было бы в этом случае сообщить телу извне энергию, равную по крайней мере его «энергии связи» (тх-\-т2— М).
Наряду с законом сохранения энергии при распаде должен выполняться законом сохранения импульса, т. е. сумма импульсов разлетающихся частей, как и первоначальный импульс тела, равна нулю: р10 + р2о = °- Отсюда p\Q = p22Q, или
#ю — т\ = &W — т\- (11,2)
Для уравнения (11,1) и (11,2) однозначно определяют энергии разлетающихся частей:
ЛГ2 + т\ - т\ М2-т2 + т\
Ш > °20 2УИ
(11,3)
В некотором смысле обратным является вопрос о вычислении суммарной энергии М двух сталкивающихся частиц в системе отсчета, в которой их суммарный импульс равен нулю (или, как говорят для краткости, в системе центра инерции или в «^-системе»). Вычисление этой величины дает критерий, определяющий возможность осуществления различных процессов неупругих столкновений, сопровождающихся изменением состояния сталкивающихся частиц или «рождением» новых частиц. Каждый такой процесс может происходить лишь при условии, что сумма масс всех «продуктов реакции» не превышает М.
Путь в исходной (или, как говорят, лабораторной) системе отсчета частица с массой ту и энергией <S\ сталкивается с покоящейся частицей с массой т2. Суммарная энергия обеих частиц
£Г = <£х -j- <$,2 — &\ + т2>
а суммарный импульс р = Pi -f- P2 = Pi- Рассматривая обе частицы вместе как одну сложную систему, мы найдем скорость ее движения как целого согласно (9,8):
V = -t = —li—. (11,4)
в этой книге (значительное место в которой уделено и нерелятивистской теории) мы, как правило, не будем пользоваться такой системой единиц, а при ее использовании будем каждый раз оговаривать это.
Если в формуле положено с = 1, то возвращение к обычным единицам не представляет труда: скорость света вводится в нее таким образом, чтобы обеспечить правильную размерность.
Это и есть скорость движения ^-системы относительно лабораторной системы (л-системы).
Однако для определения искомой массы М нет необходимости фактически производить преобразование от одной системы отсчета к другой. Вместо этого можно непосредственно воспользоваться формулой (9,6), применимой к составной системе в такой же мере, как и к каждой частице в отдельности. Таким образом, имеем:
М2 = <У2 - р2 = (ИГ, + т2У - {$\ - т\),
откуда
М2 = т\ + ml + 2т2<Г(. (11,5)
Задачи