
- •С.Г. Козлов, м.А. Куликов основыхимической технологии
- •240301.65 «Химическая технология неорганических веществ»
- •Введение
- •1. Общие понятия о химическом производстве
- •1.1. Химическая технология как наука
- •1.2. Связь химической технологии с другими науками
- •1.3. Развитие химической технологии
- •1.4. Классификация химической технологии
- •2. Компоненты химического производства
- •2.1. Сырье в химическом производстве
- •2.1.1. Основные определения
- •2.1.2. Классификация сырья
- •2.1.3. Ресурсы и рациональное использование сырья
- •2.1.4. Подготовка минерального сырья
- •2.1.5. Очистка и разделение газовых смесей
- •2.2. Энергия в химической технологии
- •2.2.1. Использование энергии в химической технологии
- •2.2.2. Источники энергии. Классификация источников энергии
- •2.2.3. Рациональное использование энергии
- •2.2.4.Новые виды энергии в химической технологии
- •2.3. Вода в химической промышленности
- •2.3.1. Основные показатели качества воды
- •2.3.2. Промышленная водоподготовка
- •2.4. Воздух в химической технологии
- •3. Критерии оценки эффективности химического производства
- •3.1. Технические показатели
- •3.2. Экономические показатели
- •3.3. Эксплуатационные показатели
- •3.4. Социальные показатели
- •3.5. Материальный и энергетический баланс химического производства
- •4. Системный подход в изучении химико-технологического процесса
- •4.1. Общие понятия и определения
- •4.2. Химико-технологическая система как объект моделирования
- •4.3. Операторы
- •4.4. Матричное представление моделей
- •4.5. Подсистемы хтс
- •4.6. Связи
- •4.7. Классификация технологических схем
- •4.8. Системный подход к разработке технологии производства
- •4.8.1. Методологические принципы
- •4.8.2. Выбор технологии производства продукции
- •4.9. Оптимизация производства
- •4.9.1. Декомпозиция химико-технологических систем
- •4.9.2. Оптимизация химико-технологических систем
- •5. Общие закономерности химических процессов
- •5.1. Понятие о химическом процессе
- •5.2. Классификация химических реакций
- •5.3. Виды химических реакций
- •5.4. Характеристика гомогенных процессов
- •5.5. Основные закономерности гомогенных процессов
- •5.6. Интенсификация гомогенных процессов
- •5.7. Гетерогенные некаталитические процессы
- •5.8. Интенсификация процессов, основанных на необратимых реакциях
- •5.9. Интенсификация процессов, основанных на обратимых реакциях
- •6. Гетерогенный катализ
- •6.1. Общие положения катализа
- •6.2. Процессы адсорбции и хемосорбции в гетерогенном катализе
- •6.2.1. Теория адсорбции Лэнгмюра
- •6.2.2. Нелэнгмюровская адсорбция
- •6.3. Механизм гетерогенных каталитических процессов
- •6.3.1. Внешняя диффузия
- •6.3.2. Внутренняя диффузия
- •6.4. Основные требования к гетерогенным катализаторам
- •6.5. Основные структурные параметры гетерогенных катализаторов
- •6.6. Технологические свойства гетерогенных катализаторов
- •6.7. Классификация гетерогенных катализаторов
- •6.8. Состав катализаторов
- •6.9. Приготовление катализаторов
- •7. Гомогенный катализ
- •7.1. Кислотный (основной) катализ
- •7.1.1. Специфический кислотный катализ
- •7.1.2. Специфический основной катализ
- •7.1.3. Общий кислотный катализ
- •7.1.4. Общий основной катализ
- •7.1.5. Электрофильный катализ
- •7.1.6. Кинетика реакций кислотно-основного катализа
- •7.2. Металлокомплексный катализ
- •7.3. Ферментативный катализ
- •8. Химические реакторы
- •8.1. Принципы классификации химических реакторов
- •8.2. Принципы проектирования химических реакторов
- •8.2.1. Моделирование химических реакторов и протекающих в них процессов
- •8.2.2. Структура математической модели химического реактора
- •8.2.3. Уравнение материального баланса для элементарного объема проточного реактора
- •8.3. Химические реакторы с идеальной структурой потока в изотермическом режиме
- •8.3.1. Реактор идеального смешения (рис)
- •8.3.2. Реактор идеального вытеснения (рив)
- •8.3.3. Примеры аналитического решения математической модели
- •8.4. Сравнение эффективности проточных реакторов идеального смешения и идеального вытеснения
- •8.5. Конструкции реакторов
- •8.5.1. Требования к реакторным конструкциям
- •8.5.2. Типизация реакторов
- •8.5.3. Примеры конструкций реакторов
- •9. Переработка природного минерального сырья
- •9.1. Процессы растворения
- •9.2. Процессы кристаллизации
- •9.3. Химическое осаждение
- •9.4. Процессы переработки труднорастворимого сырья
- •10. Химические предприятия верхнекамья
- •10.1. Оао «Уралкалий»
- •10.2. Филиал «Азот» оао «охк уралхим»
- •10.3. Оао «Березниковский содовый завод»
- •10.4. Ооо «Сода-хлорат»
- •10.5. Оао «Метафракс»
- •Рекомендуемая литература
2.1.5. Очистка и разделение газовых смесей
Газообразное сырьё бывает природного и промышленного происхождения. Природное сырьё представлено углеводородными газа ми (природный газ) и воздухом. В качестве газообразного сырья промышленного происхождения используются газы коксохимического производства (коксовый газ), газы нефтепереработки (попутный газ), газы металлургических производств, газы переработки твёрдого топлива (генераторный газ).
Методы обогащения газообразных многокомпонентных систем (или очистка и разделение газовых смесей) основаны на различии свойств компонентов смеси (например, на различии температур кипения, растворимости в каком-либо растворителе, сорбционной способности).
Приведём примеры очистки и разделения газовых смесей, имеющих место в неорганических производствах.
Разделение газов:
– разделяют воздух на азот и кислород; азот используется в производстве аммиака, а кислород – как окислитель в химической промышленности и в металлургии. Кроме того, из воздуха выделяют аргон;
– из коксового газа выделяют аммиак в виде сульфата аммония; водород, используемый далее для получения азотоводородной смеси; и сероводород, который используется для получения серной кислоты.
Очистка газов:
– природный газ, применяемый в производстве аммиака, очищают от серосодержащих соединений;
– конвертированный газ производства аммиака очищают от диоксида углерода;
– перед колонной синтеза аммиака азотоводородную смесь очищают от следов кислород содержащих соединений (СО и СО2).
Существуют следующие основные методы разделения газовых смесей: конденсация, сорбционные методы, мембранное разделение.
Суть метода конденсации заключается в том, что при охлаждении газовой смеси более высококипящие компоненты конденсируются первыми и отделяются в сепараторах. В производстве синтетического аммиака методом конденсации отделяют аммиак от непрореагировавшей азотоводородной смеси. Из коксового газа фракционным охлаждением выделяется водород.
Сорбционные методы основаны на различной сорбционной способности компонентов каким-либо поглотителем. Процесс, обратный сорбции, называется десорбцией. Сорбция и десорбция – два взаимосвязанных процесса. Когда скорость сорбции равна скорости десорбции, устанавливается динамическое равновесие. Благоприятными условиями для сорбции, то есть для поглощения газа, являются низкая температура и высокое давление. Благоприятными условиями для десорбции являются повышенная температура и пониженное давление.
В сорбционных процессах выделяют: адсорбцию и абсорбцию.
Адсорбция – это процесс поглощения одного или нескольких компонентов газовой смеси твёрдой поверхностью адсорбента. Процесс поглощения (очистки) осуществляют в аппаратах, называемых адсорберами. Адсорберы бывают: с неподвижным слоем адсорбента, с движущимся слоем, а также с кипящим слоем. Адсорбер работает в режиме «адсорбция ↔ десорбция».
В ходе очистки газа адсорбент сначала насыщается газообразным компонентом-примесью (его называют адсорбат), затем при соответствующем изменении условий процесса следует десорбция, в результате адсорбент восстанавливается. В качестве адсорбента используют: активированный уголь, цеолиты, пористые стёкла.
Абсорбция – это избирательное поглощение одного или нескольких компонентов газовой смеси жидким поглотителем (абсорбентом). Производственный цикл включает абсорбцию (при низких температурах и повышенных давлениях) и десорбцию поглощённого вещества (при нагревании и снижении давления). В качестве абсорбентов обычно используются органические и неорганические растворители. Как правило, процессы абсорбции и десорбции пространственно разделены. Очистка и разделение газовой смеси проходит в двух аппаратах. В одном (абсорбере) протекает абсорбция какого-либо компонента охлаждённым абсорбентом, в другом (регенераторе) – десорбция, при этом выделяется поглощённое вещество из раствора и регенерируется абсорбент. В регенераторе – повышенная температура и пониженное давление.
В сорбционных методах, особенно при абсорбции, имеет место не только физико-химическое поглощение одного вещества другим, но и химическое взаимодействие. В этом случае интенсификация процесса во многом зависит от скорости химической реакции. А скорость химической реакции, как известно, зависит от следующих факторов: концентрации, температуры, давления.
Следует отметить, что поглощение на твёрдом поглотителе называется сухой очисткой, поглощение раствором – мокрой.
Мембранный метод очистки газовых смесей основан на разделении с помощью микропористых перегородок (или мембран), проницаемых для молекул одного вида и непроницаемых для молекул другого вида. Мембранный метод разделения наиболее совершенный, так как исключены высокие давления и низкие температуры. В мембранных аппаратах разделяют воздух на азот и кислород, метан и водород, метан и гелий.
Следует отметить, что газы очищают также от пыли, например: в сернокислотном производстве очищают печной газ, полученный при обжиге колчедана; очищают воздух, подаваемый на окисление, в производстве серной и азотной кислот.
Особо следует отметить, что в технологии неорганических веществ необходимо очищать газовые смеси от влаги, например: воздух, подаваемый на окисление, подвергается осушке.
Метод конденсации основан на различии температур кипения компонентов.
При разделении газов методом глубокого охлаждения газовую смесь охлаждают до очень низких температур, при этом происходит последовательное сжижение составляющих компонентов, каждая фракция переходит в жидкое состояние при своей температуре. Таким способом можно разделить газовую смесь на отдельные компоненты или фракции.
Область низких температур делят:
– на умеренный холод (интервал температур от – 70 до – 1000С);
– глубокий холод (температуры ниже – 1000С).
Для охлаждения до умеренного холода в качестве хладагентов обычно используются сжиженные газы: аммиак (tкип = – 33,350С),
диоксид серы (tкип = – 10,00С), пропан (tкип = – 42,10С),
бутан (tкип = – 0,50С),то есть вещества с низкими температурами кипения. Охлаждение газа происходит вследствие того, что хладагент поглощает тепло при испарении.
Умеренное охлаждение применяется в различных отраслях химической и пищевой промышленности, а также при горных работах.
Глубоким холодом пользуются для сжижения воздуха
(tкип = – 192,00С), и последующего выделения из него азота
(tкип = – 195,80С), кислорода (tкип = – 182,00С), и аргона (tкип = – 185,90С).
Глубокое охлаждение применяют также для выделения водорода (tкип = – 252,80С) из коксового газа, этилена (tкип = – 103,70С) из газов крекинга углеводородов
Для получения глубокого холода применяют холодильные машины. Работа холодильных машин основана на свойстве реальных газов охлаждаться при расширении в определённых условиях.
Расширение газа при переходе от высокого давления к низкому без совершения работы называется дросселированием.
При расширении (дросселировании) реального газа без совершения внешней работы и без теплообмена с окружающей средой происходит охлаждение газа, так как совершается работа по преодолению сил притяжения между молекулами, в результате чего температура газа понижается. Это явление называется эффектом Джоуля – Томсона. Его используют для достижения низких температур.