
- •С.Г. Козлов, м.А. Куликов основыхимической технологии
- •240301.65 «Химическая технология неорганических веществ»
- •Введение
- •1. Общие понятия о химическом производстве
- •1.1. Химическая технология как наука
- •1.2. Связь химической технологии с другими науками
- •1.3. Развитие химической технологии
- •1.4. Классификация химической технологии
- •2. Компоненты химического производства
- •2.1. Сырье в химическом производстве
- •2.1.1. Основные определения
- •2.1.2. Классификация сырья
- •2.1.3. Ресурсы и рациональное использование сырья
- •2.1.4. Подготовка минерального сырья
- •2.1.5. Очистка и разделение газовых смесей
- •2.2. Энергия в химической технологии
- •2.2.1. Использование энергии в химической технологии
- •2.2.2. Источники энергии. Классификация источников энергии
- •2.2.3. Рациональное использование энергии
- •2.2.4.Новые виды энергии в химической технологии
- •2.3. Вода в химической промышленности
- •2.3.1. Основные показатели качества воды
- •2.3.2. Промышленная водоподготовка
- •2.4. Воздух в химической технологии
- •3. Критерии оценки эффективности химического производства
- •3.1. Технические показатели
- •3.2. Экономические показатели
- •3.3. Эксплуатационные показатели
- •3.4. Социальные показатели
- •3.5. Материальный и энергетический баланс химического производства
- •4. Системный подход в изучении химико-технологического процесса
- •4.1. Общие понятия и определения
- •4.2. Химико-технологическая система как объект моделирования
- •4.3. Операторы
- •4.4. Матричное представление моделей
- •4.5. Подсистемы хтс
- •4.6. Связи
- •4.7. Классификация технологических схем
- •4.8. Системный подход к разработке технологии производства
- •4.8.1. Методологические принципы
- •4.8.2. Выбор технологии производства продукции
- •4.9. Оптимизация производства
- •4.9.1. Декомпозиция химико-технологических систем
- •4.9.2. Оптимизация химико-технологических систем
- •5. Общие закономерности химических процессов
- •5.1. Понятие о химическом процессе
- •5.2. Классификация химических реакций
- •5.3. Виды химических реакций
- •5.4. Характеристика гомогенных процессов
- •5.5. Основные закономерности гомогенных процессов
- •5.6. Интенсификация гомогенных процессов
- •5.7. Гетерогенные некаталитические процессы
- •5.8. Интенсификация процессов, основанных на необратимых реакциях
- •5.9. Интенсификация процессов, основанных на обратимых реакциях
- •6. Гетерогенный катализ
- •6.1. Общие положения катализа
- •6.2. Процессы адсорбции и хемосорбции в гетерогенном катализе
- •6.2.1. Теория адсорбции Лэнгмюра
- •6.2.2. Нелэнгмюровская адсорбция
- •6.3. Механизм гетерогенных каталитических процессов
- •6.3.1. Внешняя диффузия
- •6.3.2. Внутренняя диффузия
- •6.4. Основные требования к гетерогенным катализаторам
- •6.5. Основные структурные параметры гетерогенных катализаторов
- •6.6. Технологические свойства гетерогенных катализаторов
- •6.7. Классификация гетерогенных катализаторов
- •6.8. Состав катализаторов
- •6.9. Приготовление катализаторов
- •7. Гомогенный катализ
- •7.1. Кислотный (основной) катализ
- •7.1.1. Специфический кислотный катализ
- •7.1.2. Специфический основной катализ
- •7.1.3. Общий кислотный катализ
- •7.1.4. Общий основной катализ
- •7.1.5. Электрофильный катализ
- •7.1.6. Кинетика реакций кислотно-основного катализа
- •7.2. Металлокомплексный катализ
- •7.3. Ферментативный катализ
- •8. Химические реакторы
- •8.1. Принципы классификации химических реакторов
- •8.2. Принципы проектирования химических реакторов
- •8.2.1. Моделирование химических реакторов и протекающих в них процессов
- •8.2.2. Структура математической модели химического реактора
- •8.2.3. Уравнение материального баланса для элементарного объема проточного реактора
- •8.3. Химические реакторы с идеальной структурой потока в изотермическом режиме
- •8.3.1. Реактор идеального смешения (рис)
- •8.3.2. Реактор идеального вытеснения (рив)
- •8.3.3. Примеры аналитического решения математической модели
- •8.4. Сравнение эффективности проточных реакторов идеального смешения и идеального вытеснения
- •8.5. Конструкции реакторов
- •8.5.1. Требования к реакторным конструкциям
- •8.5.2. Типизация реакторов
- •8.5.3. Примеры конструкций реакторов
- •9. Переработка природного минерального сырья
- •9.1. Процессы растворения
- •9.2. Процессы кристаллизации
- •9.3. Химическое осаждение
- •9.4. Процессы переработки труднорастворимого сырья
- •10. Химические предприятия верхнекамья
- •10.1. Оао «Уралкалий»
- •10.2. Филиал «Азот» оао «охк уралхим»
- •10.3. Оао «Березниковский содовый завод»
- •10.4. Ооо «Сода-хлорат»
- •10.5. Оао «Метафракс»
- •Рекомендуемая литература
4.7. Классификация технологических схем
Технологические схемы разделяются по характеру организационной структуры, числу химических стадий, направлению технологических потоков, их числу (таблица 4.5).
Таблица 4.5
Классификация технологических схем
Признак классификации |
Характеристика |
Организационная структура процесса |
Периодическая; непрерывная; комбинированная |
Число химических стадий |
Одно-, двух-, многостадийная |
Технологический маршрут сырья |
Прямая; циркуляционная |
Число продуктовых линий |
Однопродуктовая, многопродуктовая |
Номенклатура товарной продукции |
Индивидуальная; совмещенная; гибкая (модульная) |
Способ рекуперации энергии |
Энерготехнологическая; технологическая |
Степень экологизации |
Традиционная технологическая; экотехнологическая |
Размещение оборудования |
Вертикальная; горизонтальная; смешанная |
Периодические схемы в настоящее время почти не применяются в химической технологии, так как они уступают по ряду основных показателей схемам непрерывной структуры: по производительности, стационарности химико-технологического процесса, возможности рекуперации энергии и создания оптимальных условий процесса в каждом аппарате ввиду их пространственной разобщенности.
Технологический маршрут сырья – это направление движения сырья по технологическим аппаратам схемы. Существуют процессы с открытой цепью и циклические (круговые). В процессах с открытой цепью превращение исходного сырья в конечный продукт совершается за один проход через систему аппаратов. Циклическую схему применяют в случае низкой степени превращения сырья за один проход через реактор, когда непревращенное сырье рециркулируют в начало технологического процесса и смешивают со свежим исходным сырьем и снова направляют в процесс превращения. Такое непревращенное сырье называют рециклом, а способ его организации – принципом рециркуляции.
Циркуляционная схема имеет ряд преимуществ:
– возможность более полного использования сырья в условиях ограниченной степени превращения;
– наличие высокой скорости реакции и ее стационарности;
– возможность проведения процесса при неблагоприятных кинетических и термодинамических условиях;
– возможность управления процессом путем изменения количества, состава и температуры рецикла.
Если целевой продукт получают в одну стадию химической реакции, то такую схему называют одностадийной, если в две стадии – двухстадийной, более стадий – многостадийной. Химические стадии двух- и более стадийных непрерывных процессов могут протекать в разных реакторах, но современные технологические процессы предусматривают проведение многостадийных процессов в одном реакторе.
Рассмотренные основные закономерности и принципы химической технологии являются основой функционирования и совершенствования химических производств и позволяют намечать перспективы их развития. Из обозначившихся в последнее время таких перспективных направлений можно отметить следующие:
– повышение единичной мощности отдельных аппаратов и технологических установок в целом;
– сокращение, где это возможно, числа стадий производства;
– снижение энергозатрат путем создания энерготехнологических схем на основе максимального использования вторичных энергоресурсов;
– создание малоотходных и безотходных технологий, экологизация производства;
– создание гибких технологических схем с возможностью увеличения числа продуктовых потоков и ассортимента товарной продукции;
– использование новейших достижений науки и техники;
– комплексная автоматизация производственных процессов;
– использование модульного принципа в конструировании аппаратов.