
- •Глава 1 .Введение.
- •Глава 2 .Основные понятия. Законы анализа электрических цепей.
- •§2.1. Положительное направление тока и напряжения.
- •§2.2. Элементы электрических цепей.
- •2.2.1. Источники электроэнергии.
- •2.2.2. Приемники электроэнергии.
- •§2.3. Схема электрических цепей. Основа топологии цепей.
- •§2.4. Некоторые классификации и электрических цепей.
- •§2.5. Понятие об установившимся и переходном режимах электрических цепей.
- •§2.6. Основные законы анализа электрических цепей:
- •2.6.1.Закон Ома:
- •2.6.2 Законы Кирхгофа.
- •Глава 3. Расчет резистивных цепей (цепей постоянного тока).
- •§3.1. Метод преобразования:
- •3.1.1. Расчет токов и напряжений в параллельных и последовательных электрических цепях.
- •3.1.2. Преобразование сопротивлений соединенных звездой в соединение треугольником и обратное преобразование.
- •§3.2. Анализ резистивных цепей по уравнениям.
- •3.2.1.Методы законов Кирхгофа (мзк).
- •3.2.2.Метод контурных токов.
- •3.2.3.Метод наложения.
- •3.2.4.Метод узловых потенциалов. Метод 2-х узлов.
- •3.2.5. Метод эквивалентного генератора.
- •§3.3. Баланс мощностей в цепях постоянного тока.
- •§3.4. Передача мощности от источника эдс к нагрузке.
- •§3.5. Потенциальная диаграмма.
- •Глава 4. Анализ установившегося синусоидального режима.
- •§4.1. Гармонические синусоидальные колебания. Основные определения.
- •§4.2. Среднее и действующее синусоидальные значения тока, напряжения и эдс.
- •§4.3. Изображение синусоидальных функций времени вращающихся векторов
- •§4.4. Элементарные двухполюсники в цепи синусоидального напряжения.
- •4.4.1. Активное сопротивление в цепи синусоидального напряжения.
- •4.4.2. Индуктивность цепи синусоидального напряжения.
- •4.4.3. Емкость цепи синусоидального напряжения.
- •4.4.4. Последовательное соединение r, l, c – элементов.
- •4.4.5. Параллельное соединение r, l, c в цепи.
- •§4.5. Дуальные электрические цепи.
- •§4.6. Мощности в цепи синусоидального напряжения.
- •§4.7. Символический метод расчета электрических цепей.
- •4.7.1. Дифференцирование и интегрирование гармонических функций в символической форме.
- •4.7.2. Последовательное соединение r, l, c – элементов. Расчет символическим методом.
- •4.7.3. Параллельное соединение r, l, c.
- •§4.8. Баланс мощностей в цепях синусоидального тока.
- •Глава 5. Частотные характеристики линейных электрических цепей.
- •§5.1. Резонансные явления в электрических цепях.
- •5.1.1. Резонанс напряжений (последовательный резонанс).
- •5.1.2. Резонанс токов (параллельный резонанс).
- •5.1.3. Резонанс в реальном параллельном колебательном контуре с потерями энергии.
- •§5.2. Частотные характеристики последовательного колебательного контура.
- •§5.3. Полоса пропускания колебательного контура.
- •Глава 6. Расчет индуктивно связанных, трехфазных и четырех полюсных цепей.
- •§6.1. Индуктивно связанные цепи.
- •6.1.1. Основные определения.
- •2 Варианта:
- •6.1.2. Последовательное и параллельное соединение индуктивно связанных катушек.
- •6.1.3. Методы расчетов разветвленных цепей при наличии взаимной индуктивности.
- •6.1.4. Комплекс мощностей в индуктивно связанных элементах.
- •6.1.5. Схема замещения индуктивно связанных элементов (эквивалентная замена или развязка индуктивных связей).
- •6.1.6. Линейный трансформатор (без магнитопровода).
- •6.1.7. Резонанс в индуктивно связанных контурах.
- •§6.2. Трехфазные электрические цепи.
- •6.2.1. Основные понятия и определения.
- •6.2.2. Виды соединений фаз источника.
- •6.2.3. Расчет трехфазных цепей с различными видами соединений.
- •6.2.4. Мощности трехфазной цепи.
- •Глава 7. Расчет переходных процессов во временной области при постоянных, стандартных и произвольных воздействиях.
- •§7.1. Основные понятия. Законы коммутации.
- •§7.2. Классический метод анализа переходных процессов.
- •7.2.1. Переходные процессы в r , l – цепях.
- •7.2.2. Переходные процессы в rc – цепях.
- •7.2.3. Переходные процессы в разветвленных цепях:
- •7.2.4. Переходные процессы 2-ого порядка.
- •7.2.4.1. Включение r,l,с – цепи на постоянное напряжение.
- •7.2.4.2. Разряд емкости на rl-цепи .
- •§7.3. Включение пассивного двухполюсника к источнику непрерывно меняющегося напряжения (интеграл Дюамеля).
- •Глава 8. Операторный и спектральный анализ цепи.
- •§8.1. Операторный метод расчетов переходных процессов
- •8.1.1. Метод преобразований по Лапласу.
3.2.3.Метод наложения.
Метод применяется только для линейных цепей и формулируется:
ток К - ветви равен алгебраической сумме от каждой ЭДС - схемы в отдельности.
Выберем К - контур таким образом, чтобы К - ветвь входила только в этот контур, что всегда возможно. Тогда по формуле (*) (см.3.2.3):
Каждую из контурных ЭДС можно выразить через ЭДС ветвей и сгруппировать в слагаемые при этих ЭДС:
... – только матем. смысл.
Суть метода:
1) рассчитываются частичные токи в ветви от каждого источника тока (ЭДС) в отдельности. При этом внутреннее сопротивление, отсутствующих источников в схеме, остается. Ветви с идеальными источниками ЭДС закорачиваются (Rвнутр=0), а ветви с идеальными источниками тока разрываются (Rвнутр=∞).
2) алгебраически суммируют частичные токи каждой ветви с учетом выбранных направлений.
Метод наложения целесообразно применять при числе источников не больше 3-х.
3.2.4.Метод узловых потенциалов. Метод 2-х узлов.
Сначала, на основании уравнения по 1зК, определяют потенциалы узлов, а затем через них рассчитывают токи в ветвях.
Дано: Е1, Е2,
R1 ... R4
Определить токи в ветвях (МУП)
1. Число уравнений по МУП равно ()= 2 (ур.)
2. Потенциал одного из узлов принимается за 0:
𝜑3 = 0 – базисный узел.
3. Система уравнений: , где
– собственная проводимость узла (сумма проводимостей ветвей, сходящихся в узле ).
Всегда берется со знаком «+».
общая проводимость и К (сумма проводимостей ветвей между и К, всегда со знаком «»).
узловой ток узла алгебраическая сумма токов от источников ЭДС и от источников тока,
сходящихся в узле .
В общем виде для n узлов система содержит (n – 1) уравнений:
(**)
∆6 – определитель системы, элементы которой являются проводимостями: ≠ 0
=
Найдя потенциалы узлов, находим токи в ветвях, определяя произвольно их направления:
; ; ; ; = .
Примечание: при наличии ветвей с идеальным источником ЭДС (RВНУТ=0) целесообразно принять за базисный узел один из узлов, к которому присоединена данная ветвь. Тогда, потенциал 2-го узла становится известным и число уравнений сокращается.
у = 4
у 1 = 3
𝜑4 = 0 ⇒ 𝜑1 = Е
Метод 2-х узлов:
𝜑2 = 0 ; + = ;
Правило знаков: по 1 закону Кирхгофа.
3.2.5. Метод эквивалентного генератора.
Используется для расчета тока в одной ветви сложной электрической цепи. Метод основан на теореме Тевенена.
Теорема Тевенена: ток в любой ветви линейной электрической цепи не изменится, если электрическую цепь, к которой подсоединена данная ветвь, заменить эквивалентным генератором.
- равна напряжению на зажимах разомкнутой цепи (режим холостого хода).
- равно сопротивлению пассивной электрической цепи между точками и при отключенной
ветви .
Примеры
теоремы:
Дано: ; ;
Определить: - ? (МЭГ)
1) Определяем :
2) Определяем :
3) Ищем ток :