
- •Глава 1 .Введение.
- •Глава 2 .Основные понятия. Законы анализа электрических цепей.
- •§2.1. Положительное направление тока и напряжения.
- •§2.2. Элементы электрических цепей.
- •2.2.1. Источники электроэнергии.
- •2.2.2. Приемники электроэнергии.
- •§2.3. Схема электрических цепей. Основа топологии цепей.
- •§2.4. Некоторые классификации и электрических цепей.
- •§2.5. Понятие об установившимся и переходном режимах электрических цепей.
- •§2.6. Основные законы анализа электрических цепей:
- •2.6.1.Закон Ома:
- •2.6.2 Законы Кирхгофа.
- •Глава 3. Расчет резистивных цепей (цепей постоянного тока).
- •§3.1. Метод преобразования:
- •3.1.1. Расчет токов и напряжений в параллельных и последовательных электрических цепях.
- •3.1.2. Преобразование сопротивлений соединенных звездой в соединение треугольником и обратное преобразование.
- •§3.2. Анализ резистивных цепей по уравнениям.
- •3.2.1.Методы законов Кирхгофа (мзк).
- •3.2.2.Метод контурных токов.
- •3.2.3.Метод наложения.
- •3.2.4.Метод узловых потенциалов. Метод 2-х узлов.
- •3.2.5. Метод эквивалентного генератора.
- •§3.3. Баланс мощностей в цепях постоянного тока.
- •§3.4. Передача мощности от источника эдс к нагрузке.
- •§3.5. Потенциальная диаграмма.
- •Глава 4. Анализ установившегося синусоидального режима.
- •§4.1. Гармонические синусоидальные колебания. Основные определения.
- •§4.2. Среднее и действующее синусоидальные значения тока, напряжения и эдс.
- •§4.3. Изображение синусоидальных функций времени вращающихся векторов
- •§4.4. Элементарные двухполюсники в цепи синусоидального напряжения.
- •4.4.1. Активное сопротивление в цепи синусоидального напряжения.
- •4.4.2. Индуктивность цепи синусоидального напряжения.
- •4.4.3. Емкость цепи синусоидального напряжения.
- •4.4.4. Последовательное соединение r, l, c – элементов.
- •4.4.5. Параллельное соединение r, l, c в цепи.
- •§4.5. Дуальные электрические цепи.
- •§4.6. Мощности в цепи синусоидального напряжения.
- •§4.7. Символический метод расчета электрических цепей.
- •4.7.1. Дифференцирование и интегрирование гармонических функций в символической форме.
- •4.7.2. Последовательное соединение r, l, c – элементов. Расчет символическим методом.
- •4.7.3. Параллельное соединение r, l, c.
- •§4.8. Баланс мощностей в цепях синусоидального тока.
- •Глава 5. Частотные характеристики линейных электрических цепей.
- •§5.1. Резонансные явления в электрических цепях.
- •5.1.1. Резонанс напряжений (последовательный резонанс).
- •5.1.2. Резонанс токов (параллельный резонанс).
- •5.1.3. Резонанс в реальном параллельном колебательном контуре с потерями энергии.
- •§5.2. Частотные характеристики последовательного колебательного контура.
- •§5.3. Полоса пропускания колебательного контура.
- •Глава 6. Расчет индуктивно связанных, трехфазных и четырех полюсных цепей.
- •§6.1. Индуктивно связанные цепи.
- •6.1.1. Основные определения.
- •2 Варианта:
- •6.1.2. Последовательное и параллельное соединение индуктивно связанных катушек.
- •6.1.3. Методы расчетов разветвленных цепей при наличии взаимной индуктивности.
- •6.1.4. Комплекс мощностей в индуктивно связанных элементах.
- •6.1.5. Схема замещения индуктивно связанных элементов (эквивалентная замена или развязка индуктивных связей).
- •6.1.6. Линейный трансформатор (без магнитопровода).
- •6.1.7. Резонанс в индуктивно связанных контурах.
- •§6.2. Трехфазные электрические цепи.
- •6.2.1. Основные понятия и определения.
- •6.2.2. Виды соединений фаз источника.
- •6.2.3. Расчет трехфазных цепей с различными видами соединений.
- •6.2.4. Мощности трехфазной цепи.
- •Глава 7. Расчет переходных процессов во временной области при постоянных, стандартных и произвольных воздействиях.
- •§7.1. Основные понятия. Законы коммутации.
- •§7.2. Классический метод анализа переходных процессов.
- •7.2.1. Переходные процессы в r , l – цепях.
- •7.2.2. Переходные процессы в rc – цепях.
- •7.2.3. Переходные процессы в разветвленных цепях:
- •7.2.4. Переходные процессы 2-ого порядка.
- •7.2.4.1. Включение r,l,с – цепи на постоянное напряжение.
- •7.2.4.2. Разряд емкости на rl-цепи .
- •§7.3. Включение пассивного двухполюсника к источнику непрерывно меняющегося напряжения (интеграл Дюамеля).
- •Глава 8. Операторный и спектральный анализ цепи.
- •§8.1. Операторный метод расчетов переходных процессов
- •8.1.1. Метод преобразований по Лапласу.
§3.2. Анализ резистивных цепей по уравнениям.
3.2.1.Методы законов Кирхгофа (мзк).
Метод не требует никаких преобразований схемы и пригоден для расчета любой цепи.
Дано: Е1, Е2; R1 ... R4
Определить токи в ветвях (МЗК)
Определяем число независимых уравнений, по законам Кирхгофа, которые по количеству равны числу ветвей или числу неизвестных токов.
Число уравнений по 1закону Кирхгофа (1зК) и 2 закону Кирхгофа (2зК) равно «в» – число ветвей.
По 1зК число уравнений равно числу узлов без единицы: .
По 2зК число уравнений равно числу ветвей: – число независимых контуров.
Независимый контур – контур, в котором есть хотя бы одна ветвь, отсутствующая в других контурах
Сколько «стекол», столько независимых контуров !!!
Произвольно выбираем положительные направления токов в ветвях и направления обхода контуров:
1-ый контур
Решаем систему уравнений методом подстановки или методом определителей (метод Крамера):
∆ = ≠ 0
I1 = ; I2 = ; I3 = , где
∆1 = и т.д.
3.2.2.Метод контурных токов.
Сначала, на основании уравнения 2зК, определяются контурные токи, которые замыкаются в независимых контурах. Это фиктивные токи. Затем, через контурные токи определяют токи в ветвях.
Дано: Е1, Е2, Е3 ; R1 ... R6
Определить токи в ветвях (МКТ)
ɞ = 5 ; у = 3 ; q = 3
1. Число уравнений по методу контурных токов (МКТ) равно q = 3.
2. Выбираем направление контурных токов в одну сторону.
3. Составляем систему уравнений:
, где
– собственное сопротивление контура (сумма сопротивлений, входящих в контур, всегда с «+»);
- общее или взаимное сопротивление контуров (сумма сопротивлений, принадлежащих контуру и контуру к , всегда с «-»);
– контурная ЭДС контура (алгебраическая сумма ЭДС, входящая в контур).
+ , если совпадает с направлением контурного тока.
- , если противоположно направлению контурного тока или направлению обхода.
В общем виде для независимых контуров система уравнений имеет вид:
Контурное ЭДС:
; ;
Решая систему уравнений методом определителей для контурного тока в К –контуре, получаем:
(*) , где
≠ 0 (n – число независимых контуров);
- число независимых контуров.
- алгебраическое дополнение.
= =
Далее определяются токи в ветвях через контурные токи. Для этого произвольно выбирают направление токов.
Токи в ветвях, которые принадлежат одному контору, равны контурному току с учетом выбранного направления. А токи в смежных ветвях равны разности контурных токов и совпадают по направлению с одним из них.
Примечание: если в схеме есть идеальный источник тока с внутренним сопротивлением, равным ∞, то ток этого источника надо выбрать в качестве контурного, при этом число неизвестных контурных токов и число уравнений сокращаются.