
- •1.Эконометрика, её задача и метод.
- •2. Экономические данные и их статистические хараетристики.
- •3.Типовые распределения выборочных характеристик
- •4. Точность и надежность выборочных характеристик. Понятие надежности и доверительного интервала.
- •5. Корреляция случайных величин, уравнение регрессии. Регрессионная зависимость между случайными факторами.
- •6. Оценка параметров уравнения регрессии методом наименьших квадратов.
- •7. Геометрическая интерпретация метода наименьших квадратов.
- •8.Показатели адекватности уравнения регрессии
- •9. Связь дисперсии результирующей переменной с дисперсией регрессии
- •10. Связь дисперсии результирующей переменной с остаточной дисперсией
- •11. Точность и значимость коэффициентов регрессии.
- •12. Связь показателей адекватности и точности уравнения регрессии.
- •13. Связь коэффициентов уравнения регрессии с выборочными значениями результирующей переменной
- •14. Дисперсия коэффициентов регрессии.
- •15. Условия оптимальности мнк-оценок. Теорема Гаусса-Маркова.
- •16. Множественная линейная регрессия.
- •17. Решение системы линейных уравнений множественной регрессии
- •18. Матричная форма записи множественной линейной регрессии
- •19. Натуральная и стандартизованная формы модели множественной регрессии.
- •20. Связь коэффициентов обычной и стандартизованной регрессии.
- •21. Показатели силы связи в модели множественной регрессии.
- •22. Оптимальность коэффициентов множественной регрессии.
- •23. Оценка значимости модели множественной регрессии и ее параметров.
- •24. Прогнозирование на основе модели множественной регрессии.
- •25. Линейные регрессионные модели с гетероскедастичностью.
- •26. Нелинейные регрессионные модели и их классификация.
- •27. Регрессионная модель, линейная относительно параметров.
- •28.Обобщенный метод наименьших квадратов
- •30. Особенности включения в модели регрессии неколичественных показателей.
- •31. Модели регрессии с фиктивными переменными сдвига, наклона.
- •32. Временной ряд и его характеристики.
- •33. Корреляция временных рядов.
- •34. Определение тренда временного ряда.
- •35. Учет автокорреляции остатков временного ряда. Критерий Дарбина-Уотсона.
- •36. Сглаживание временных рядов.
- •37. Системы эконометрических моделей. Одновременные системы уравнений.
- •38. Проблема идентификации эконометрических моделей.
6. Оценка параметров уравнения регрессии методом наименьших квадратов.
Дня оценки параметров регрессионного уравнения наиболее часто используют метод наименьших квадратов (МНК).
Метод наименьших квадратов дает оценки, имеющие наименьшую дисперсию в классе всех линейных оценок, если выполняются предпосылки нормальной линейной регрессионной модели.
Свойство эффективности оценок неизвестных параметров модели регрессии, полученных методом наименьших квадратов, доказывается с помощью теоремы Гаусса-Маркова.
При
оценке параметров уравнения регрессии
применяется МНК. При этом делаются
определенные предпосылки относительно
составляющей
,
которая представляет собой в
уравнении
ненаблюдаемую
величину.
Исследования
остатков
предполагают
проверку наличия следующих пяти
предпосылок МНК:
1) случайный характер остатков. С этой целью строится график отклонения остатков от теоретических значений признака. Если на графике получена горизонтальная полоса, то остатки представляют собой случайные величины и применение МНК оправдано. В других случаях необходимо применить либо другую функцию, либо вводить дополнительную информацию и заново строить уравнение регрессии до тех пор, пока остатки не будут случайными величинами.
2)
нулевая средняя величина остатков,
т.е.
,
не зависящая от хi. Это выполнимо для
линейных моделей и моделей, нелинейных
относительно включаемых переменных.
С этой целью наряду с изложенным графиком
зависимости остатков
от
теоретических значений результативного
признака ухстроится график зависимости
случайных остатков
от
факторов, включенных в регрессию хi .
Если остатки на графике расположены в
виде горизонтальной полосы, то они
независимы от значений xj. Если же
график показывает наличие
зависимости
и хj то
модель неадекватна. Причины
неадекватности могут быть разные.
3. Гомоскедастичность — дисперсия каждого отклонения одинакова для всех значений хj. Если это условие применения МНК не соблюдается, то имеет место гетероскедастичность. Наличие гетероскедастичности можно наглядно видеть из поля корреляции.
4. Отсутствие автокорреляции остатков. Значения остатков распределены независимо друг от друга. Автокорреляция остатков означает наличие корреляции между остатками текущих и предыдущих (последующих) наблюдений. Отсутствие автокорреляции остаточных величин обеспечивает состоятельность и эффективность оценок коэффициентов регрессии.
5. Остатки подчиняются нормальному распределению.
В тех случаях, когда все пять предпосылок выполняются, оценки, полученные по МНК и методу максимального правдоподобия, совпадают между собой. Если распределение случайных остатков не соответствует некоторым предпосылкам МНК, то следует корректировать модель, изменить ее спецификацию, добавить (исключить) некоторые факторы, преобразовать исходные данные, что в конечном итоге позволяет получить оценки коэффициентов регрессии aj, которые обладают свойством несмещаемости, имеют меньшее значение дисперсии остатков, и в связи с этим более эффективную статистическую проверку значимости параметров регрессии.