- •1.Предмет и задачи дисциплины «Безопасность пищевых продуктов».
- •2.Понятие качества и безопасности пищевых продуктов.Нормативно-законодательная основа безопасности пищевых продуктов в России.
- •3.Методы оценки качества и безопасности пищевой продукции.
- •4.Продовольственная безопасность и основные критерии её оценки.
- •5.Гигиенические требования, предъявляемые к пищевым продуктам.
- •6.Пищевая, биологическая ценность и безопасность мяса и мясопродуктов.
- •7.Пищевая,биологическая ценность и безопасность рыбы и рыбопродуктов.
- •8.Пищевая,биологическая ценность и безопасность молока и молочных продуктов.
- •9.Пищевая,биологическая ценность и безопасность зерна,мукомольно-крупяных и хлебобулочных изделий.
- •11.Опасности,связанные с недостатком или избытком белка в питании.
- •12.Опасности,связанные с недостатком или избытком жиров и углеводов в питании.
- •14.Опасности, связанные с недостатком или избытком минеральных веществ в питании.
- •15.Понятие об антиалиментарных факторах .Ингибиторы пищеварительных ферментов. Антивитамины. Факторы, снижающие усвоение минеральных веществ.
- •16.Компоненты пищи, негативно влияющие на организм человека(лектины, цианогенныегликозиды,алкалоиды). Меры по снижению их отрицательного влияния на организм.
- •17. Понятие о ксенобиотиках, их классификация. Пути и виды загрязнения продовольственного сырья и пищевых продуктов. Приоритеты загрязнения.
- •18.Общие принципы гигиенического нормирования вредных веществ в пищевых продуктах( пдк,дсп, дсд). Меры токсичности веществ.
- •19.Свинец. Токсиколого-гигиеническая характеристика. Профилактика загрязнений.
- •20.Ртуть. Токсиколого-гигиеническая характеристика. Профилактика загрязнений.
- •21.Кадмий. Токсиколого-гигиеническая характеристика. Профилактика загрязнений.
- •22.Мышьяк. Токсиколого-гигиеническая характеристика. Профилактика загрязнений.
- •23.Олово. Токсиколого-гигиеническая характеристика. Профилактика загрязнений.
- •24.Алюминий. Токсиколого-гигиеническая характеристика. Профилактика загрязнений.
- •25.Медь. Токсиколого-гигиеническая характеристика. Профилактика загрязнений.
- •26.Железо. Физиологическое значение. Токсиколого-гигиеническая характеристика. Профилактика загрязнений.
- •27.Цинк. Физиологическое значение. Токсиколого-гигиеническая характеристика. Профилактика загрязнений.
- •28. Предельно допустимые концентрации тяжелых металлов в продуктах питания (мг/кг)
- •34. Загрязнение пищевых продуктов регуляторами роста растений
- •35. Нитраты и нитриты. Факторы, влияющие на содержание в пищевых продуктах. Влияние на организм человека. Технологические способы снижения содержания нитратов и нитритов в пищевых продуктах.
- •36. Нитрозосоединения и их токсикологическая характеристика. Пути образования нитрозосоединений. Меры профилактики.
- •37. Загрязнение пищевых продуктов антибиотиками и гормональными препаратами, применяемыми в животноводстве.
- •38. Диоксины. Источники образования. Поведение в окружающей среде. Влияние на организм человека. Методы детоксикации.
- •40. Микробиологические показатели безопасности пищевых продуктов.
- •41. Санитарно-показательные м/o.
- •42. Условно-патогенные м/o. Эпидеомология и профилактика
- •43. Патогенные мо. Средства защиты пищевых продуктов.
- •44. Микроорганизмы порчи пищевых продуктов.
- •45. Пищевые инфекции, профилактика и прочее.
- •46. Пищевые отравления.
- •47. Микотоксины
28. Предельно допустимые концентрации тяжелых металлов в продуктах питания (мг/кг)
Продукты |
As |
Cd |
Cu |
Sn |
Hg |
Pb |
Зерно, крупа |
0,2 |
0,1(0,03) |
10,0 |
– |
0,03 |
0,5(0,3) |
Хлеб |
0,1 |
0,05 |
5,0 |
– |
0,01 |
0,3 |
Молоко, кисломолочные продукты |
0,06 |
0,03(0,02) |
1,0 |
– |
0,005 |
0,1(0,05) |
Молоко сгущеное кон-сервированное |
0,15 |
0,1 |
3,0 |
200,0 |
0,015 |
0,3 |
Масло сливочное, живот-ные жиры |
0,1 |
0,03 |
0,5 |
– |
0,03 |
0,1 |
Масло растительное |
0,1 |
0,05 |
0,5 |
– |
0,3 |
0,1 |
Сыр, творог |
0,2 |
0,2 |
4,0 |
– |
0,02 |
0,3 |
Овощи и картофель |
0,2 |
0,03 |
5,0 |
– |
0,02 |
0,5 |
Консервы овощные |
0,2 |
0,03 |
5,0 |
200,0* |
0,02 |
0,5** |
Почки и продукты их переработки |
1,0 |
1,0 |
20,0 |
– |
0,2 |
1,0 |
Грибы |
0,5 |
0,1 |
10,0 |
– |
0,05 |
0,5 |
Чай |
1,0 |
1,0 |
100,0 |
– |
0,1 |
10,0 |
Мясо и птица, охлажденные и мороженные |
0,1 |
0,05 |
5,0 |
– |
0,03 |
0,5 |
Консервы из мяса и птицы |
0,1 |
0,05 |
5,0 |
200,0* |
0,03 |
0,5 |
Колбасы |
0,1 |
0,05 |
– |
– |
0,03 |
0,5 |
Рыба свежая, охлажденная и мороженная |
1,0 |
0,2 |
10,0 |
– |
0,3-0,5 |
1,0 |
Консервы рыбные |
1,0 |
0,2 |
10,0 |
200,0* |
0,3-0,4 |
1,0 |
Моллюски и ракообраз-ные |
2,0 |
2,0 |
30 |
– |
0,2 |
10,0 |
Минеральные воды |
0,1 |
0,01 |
1,0 |
– |
0,005 |
0,1 |
Продукты детского питания: |
||||||
на молочной основе |
0,05 |
0,02 |
1,0 |
– |
0,005 |
0,05 |
на зерномолочной основе |
0,1 |
0,02 |
5,0 |
– |
0,01 |
0,1 |
Консервы рыбные |
0,5 |
0,1 |
10,0 |
100* |
0,15 |
0,5 |
Консервы плодоовощные |
0,2 |
0,02 |
5,0 |
– |
0,01 |
0,3 |
29. Радионуклиды. Радиоактивные вещества ( уран-238, радий-226, торий-232 и др.) и изотопы стабильных химических элементов, отличающиеся массовым числом и неустойчивым состоянием атомов (стронций-90, цезий-134 и 137, америций-241) называются радионуклидами.
Мерой радиоактивности радионуклида в соответствии с системой измерений СИ, является его активность, которая измеряется в Беккерелях (Бк). Один Бк равен 1 ядерному превращению в секунду. Кроме того, в качестве меры радиоактивности широко используется несистемная величина Кюри (Ки) и ее производные (милликюри, микрокюри и т.д.). Численно 1 Кюри = 3.7*1010 Бк, а 1 Бк = 0.027нКи (наноКюри). Содержание активности в единице массы вещества характеризуется удельной активностью, которая измеряется в Бк/кг (л)
Радиоактивные вещества могут попадать в организм человека тремя путями: через органы дыхания (при вдыхании загрязненного радиоактивными аэрозолями воздуха), через желудочно-кишечный тракт (с продуктами питания и водой), через кожу (резорбция через кожу). С воздухом в организм человека поступает несколько более 1% радиоактивности. Примерно 5% попадает с питьевой водой. Основной опасностью является поступление радионуклидов с пищей.
Наиболее важным и потенционально опасным является ингаляционное поступление радионуклидов. Этому содействует большая дыхательная поверхность альвеол, площадь которой достигает 100 м2 и более (более чем в 50 раз превышает площадь кожи). Кроме того, этот путь опасен и из-за более высокого коэффициента захвата и усвоения изотопов из воздуха.
Радиоактивность воздуха может быть обусловлена содержанием в нем радиоактивных газов или аэрозолей в виде пыли, тумана, дыма. Доля радионуклидов, которые задерживаются в дыхательной системе, зависит от размера частиц, минутного объема легких и частоты дыхания. Обмен радиоактивных элементов при поступлении их в легкие с выдыхаемым воздухом определяют три параметра:
1. Размер или диспертность вдыхаемых частиц (аэрозолей);
2. Склонность радионуклидов к гидролизу и комплексообразованию, от которых зависит путь и скорость их выведения из легких;
3. Период полураспада радионуклида.
При вдыхании воздуха радиоактивные вещества, содержащиеся в нем (частицы радиоактивной пыли), задерживаются на всем протяжении дыхательного тракта от преддверия носа, носоглотки, полости рта до глубоких альвеолярных отделов легких. При этом между размером частицы и глубиной ее проникновения имеется зависимость. Радиоактивные частицы с аэродинамическим диаметром 50 мкм могут достигать только носоглотки (откуда могут потом поступать в желудок), и в основном отхаркиваются. Частицы с диаметром 7,5-10 мкм задерживаются в верхних дыхательных путях на 70-90% (не проникают в альвеолы). Более мелкие частицы (0,05 мкм) задерживаются в альвеолярном отделе легких на 35-65%.
Второй по значимости путь –поступление радионуклидов с пищей и водой. Питательные вещества вместе с фоновыми концентрациями естественных радиоактивных веществ могут быть загрязнены искусственными радионуклидами, которые из внешней среды по биологическим пищевым цепочкам попадают в растения, организмы животных и, наконец, в продукты питания.
Дальнейшая судьба радиоактивных веществ зависит от их растворимости в кислой среде желудка. Многие растворимые соединения, а именно редкоземельные и трансурановые элементы, в частности, соединения плутония, при щелочной среде кишечного сока превращаются в нерастворимые соединения. Возможно и обратное, когда плохо растворимые в воде вещества в жидкой среде ЖКТ превращаются в растворимые компоненты, которые хорошо всасываются в кровь через эпителий кишечника.
В организм поступает только некоторая часть радионуклидов, попавших в кишечник, большая часть их проходит «транзитом» и удаляется из кишечника. Коэффициент всасывания (резорбции) – это доля вещества, которая поступает из ЖКТ в кровь. Он равен для трития, натрия, криптона, йода, цезия, ксенона – 1,0; стронция – 0,3; теллура – 0,25; урана, радия – 0,2; бария, полония – 0,1; церия, висмута – 0,25; плутония – 0,0005. Радиоактивные вещества, которые в ЖКТ всасываются в количестве менее 1% (коэффициент всасывания менее 0,01) очень быстро удаляются с калом (в течение 1-4 суток).
Поступление радионуклидов через кожу. До недавнего времени считали, что неповрежденная кожа является эффективным барьером для радионуклидов. Резорбция через неповрежденную кожу в 200-300 раз меньшая, чем из ЖКТ. Сейчас известен целый ряд радионуклидов, которые проникают через кожу в составе жидких или газообразных соединений (особенно через порезы, царапины, ссадины). Так, скорость проникновения паров оксида трития и газообразного йода через неповрежденную кожу сравнивается со скоростью проникновения этих веществ через дыхательные пути, а количество плутония, проникающего через кожу в виде водорастворимых соединений, не меньше, чем при поступлении через ЖКТ. При приеме радоновой ванны на протяжении 20 минут в организм проникает через кожу до 4% радона, содержащегося в воде. Хорошо проникает через кожу молибден, церий, иттрий. Стронций, цезий, теллур через кожу всасывается медленно.
Проницаемость кожи резко увеличивается при воздействии многих химически активных веществ (бензина, обезжиривающих растворителей), при повреждении рогового слоя кожи, играющего главную роль в барьерной функции кожи. Значительное влияние на интенсивность поглощения радионуклидов кожей оказывает температура и влажность воздуха.
Проникая в потовые, жировые железы, а также волосяные фолликулы, радиоактивные вещества могут оставаться там достаточно длительное время. При проникновении в собственно кожу, радиоактивные вещества либо задерживаются в ней на длительное время, либо достигают кровеносных и лимфатических сосудов и течением лимфы и крови разносятся по организму. Тем самым они создают опасность облучения самой кожи и тех внутренних органов, куда они доставляются кровотоком. Радиационные повреждения внутренних органов радионуклидами, проникшими через кожу, не отличаются по характеру от поражений при проникновении их через ЖКТ, легкие и связаны, прежде всего, с дозой облучения и с распределением в организме. Поэтому необходимо обратить внимание на дезактивацию кожи, как на средство, предупреждающее накапливание радионуклидов во внутренних органах. Ионизирующее излучение - излучение (электромагнитное, корпускулярное), которое при взаимодействии с веществом непосредственно или косвенно вызывает ионизацию и возбуждение его атомов и молекул. Энергия ионизирующего излучения достаточно велика, чтобы при взаимодействии с веществом, создать пару ионов разных знаков, т.е. ионизировать ту среду в которую попали эти частицы или гамма кванты. Ионизирующее излучение состоит из заряженных и незаряженных частиц, к которым относятся также фотоны. В результате воздействия ионизирующих излучений на организм человека в тканях могут происходить сложные физические, химические и биохимические процессы. Ионизирующие излучения вызывают ионизацию атомов и молекул вещества, в результате чего молекулы и клетки ткани разрушаются.
Известно, что 2/3 общего состава ткани человека составляют вода и углерод. Вода под воздействием излучения расщепляется на водород Н и гидроксильную группу ОН, которые либо непосредственно, либо через цепь вторичных превращений образуют продукты с высокой химической активностью: гидратный окисел НО2 и перекись водорода Н2O2. Эти соединения взаимодействуют с молекулами органического вещества ткани, окисляя и разрушая ее.
В результате воздействия ионизирующих излучений нарушается нормальное течение биохимических процессов и обмен веществ в организме. В зависимости от величины поглощенной дозы излучения и от индивидуальных особенностей организма вызванные изменения могут быть обратимыми или необратимыми. При небольших дозах пораженная ткань восстанавливает свою функциональную деятельность. Большие дозы при длительном воздействии могут вызвать необратимое поражение отдельных органов или всего организма (лучевое заболевание).
Любой вид ионизирующих излучений вызывает биологические изменения в организме как при внешнем облучении, когда источник облучения находится вне организма, так и при внутреннем облучении, когда радиоактивные вещества попадают внутрь организма, например, ингаляционным путем — при вдыхании или при заглатывании с пищей или водой.
Биологическое действие ионизирующего излучения зависит от величины дозы и времени воздействия излучения, от вида радиации, размеров облучаемой поверхности и индивидуальных особенностей организма.
При Однократном облучении всего тела человека возможны следующие биологические нарушения в зависимости от дозы излучения:
0—25 рад 1 видимых нарушений нет;
25—50 рад . . . возможны изменения в крови;
50—100 рад . . . изменения в крови, нормальное состояние трудоспособности нарушается;
100—200 рад . . . нарушение нормального состояния, возможна потеря трудоспособности;
200—400 рад . . . потеря трудоспособности, возможен смертельный исход;
400—500 рад . . . смертельные случаи составляют 50% общего числа пострадавших
600 рад и более смертельный исход почти во всех случаях облучения.
При облучении дозами, в 100—1000 раз превышающими смертельную дозу, человек может погибнуть во время облучения.
30. Уменьшение поступления радионуклидов в организм с пищей можно достичь путем снижения их содержания в продуктах при помощи различных технологических или агрозоотехнических приемов, а также моделирования питания, т.е. использования рационов, содержащих их минимальное количество.
За счет обработки пищевого сырья - тщательного мытья, чистки продуктов, отделения малоценных частей можно удалить от 20 до 60% радионуклидов. Так, перед мытьем некоторых овощей целесообразно удалять верхние наиболее загрязненные листья (капуста, лук репчатый и др.). Картофель и корнеплоды обязательно моют дважды: перед очисткой от кожуры и после.
Наиболее предпочтительным способом кулинарной обработки пищевого сырья в условиях повышенного загрязнения окружающей среды радиоактивными веществами является варка. При отваривании значительная часть радионуклидов переходит в отвар (таблица 17).
Таблица 17 - Влияние способа кулинарной обработки на содержание
радионуклидов в продуктах
Исходный продукт |
Способ кулинарной обработки |
Уменьшение содержания на Х% |
|
137Cs |
90Sr |
|
|
Картофель |
Очистка от кожуры Отваривание в пресной воде Отваривание в подсоленной воде |
- 30…45 |
30…40 - - |
Свекла |
Отваривание Очистка от кожуры |
- |
- 30…40 |
Капуста |
Отваривание |
60…80 |
- |
Горох |
Отваривание |
45…80 |
- |
Щавель |
Отваривание |
45…80 |
- |
Мясо Мясо говяжье Мясо свиное Мясо куриное |
Отваривание Вымачивание в пресной воде и последующее отваривание Вымачивание в пресной воде, выдержка в 25% рассоле в течение 3 мес. и сваренное Отваривание |
80…90 |
- - - |
Рыба |
Удаление чешуи, внутренностей, жабр Отваривание Приготовление ухи |
70…90 15…28 |
- - - |
Молоко |
Приготовление творога Приготовление сметаны Приготовление сыра Приготовление сливок Приготовление масла сливочного Приготовление масла топленого |
60…90 92…95 52…99 |
- - |
Грибы Грибы сухие Грибы белые |
Промывка проточной водой 18...32 Отваривание однократное в течение 10 мин Отваривание 2 раза по 10мин Вымачивание в течение 2 ч Вымачивание в течение 2 ч |
18…32 |
- - - - - |
Кости животных Кости рыбные |
Отваривание Отваривание |
- |
десятые доли |
Зерно |
Получение муки с выходом 70% |
|
|
Использовать отвары в пищу нецелесообразно. Для получения отвара нужно варить продукт в воде 10 мин, а затем слить воду и продолжать варку в новой порции воды. Такой отвар уже можно использовать в пищу, например, он приемлем при приготовлении первых блюд.
Мясо перед приготовлением в течение двух часов следует замочить в холодной воде, порезав его небольшими кусками, затем снова залить холодной водой и варить при слабом кипении в течение 10 мин, слить воду и в новой порции воды варить до готовности. При жарении мяса и рыбы происходит их обезвоживание и на поверхности образуется корочка, препятствующая выведению радионуклидов и других вредных веществ. Поэтому при вероятности загрязнения пищевых продуктов радиоизотопами следует отдавать предпочтение отварным мясным и рыбным блюдам, а также блюдам, приготовленным на пару.
На выведение радионуклидов из продукта в бульон влияет солевой состав и реакция воды. Так, выход 90Sr в бульон из кости составляет (в процентах от активности сырого продукта): при варке в дистиллированной воде - 0,02; в водопроводной - 0,06; в водопроводной с лактатом кальция - 0,18.
Питьевая вода из централизованного водопровода обычно не требует какой-либо дополнительной обработки. Необходимость дополнительной обработки питьевой воды из шахтных колодцев состоит в ее кипячении в течение 15...20 мин. Затем следует ее охладить, отстоять и осторожно, не взмучивая осадка, перелить прозрачный слой в другую посуду.
Существенного снижения содержания радионуклидов в молочных продуктах можно достичь путем получения из молока жировых и белковых концентратов. При переработке молока в сливках остается не более 9% цезия и 5% стронция, в твороге - 21% цезия и около 27% стронция, в сырах - 10% цезия и до 45% стронция. В сливочном масле всего около 2% цезия от его содержания в цельном молоке.
Для выведения уже попавших в организм радионуклидов необходима высокобелковая диета. Употребление белка должно быть увеличено не менее, чем на 10% от суточной нормы, для восполнения носителей SH - групп, окисляемых активными радикалами, образуемых радионуклидами. Источниками белковых веществ, кроме мяса и молочных продуктов, являются продукты из семян бобовых растений, морская рыба, а также крабы, креветки и кальмары.
31. Пестициды - синтетические химические вещества различной степени токсичности, применяемые в сельском хозяйстве для защиты растений от сорняков, вредителей и болезней, а также для стимулирования их роста. Необходимо отметить, что современное сельскохозяйственное производство невозможно без применения пестицидов. Использование пестицидов приводит к увеличению урожайности на 40 %. Однако введение в почву стойких ядохимикатов может привести к их круговороту и накоплению в организме человека.
По токсичности ядохимикаты классифицируются на сильнодействующие, высоко-, средне- и малотоксичные. Главным критерием токсичности является средне смертельная концентрация (ЛД50) из расчета на 1 кг массы животного. Наиболее опасными являются ядохимикаты с ЛД50 менее 50 мг на кг массы тела. К высокотоксичным относятся пестициды с ЛД50 от 50 до 200 мг на 1 кг массы тела, к среднетоксичным - от 200 до 1000 мг на 1 кг и к малотоксичным веществам относятся пестициды со средне смертельной концентрацией более 1000 мг на кг. Хлорорганические пестициды (ХОП). Применяют в сельском хозяйстве в качестве активных инсектицидов, акарицидов и фумигантов в борьбе с вредителями зерновых и технических культур. По химической природе пестициды этого класса представляют собой хлор производные ароматических углеводородов, парафинов, терпенов. К ним относятся бензол, бутадиен, гамма-изомер ГХЦГ, ДДТ, ДД и др. Эти пестициды могут длительно (до 10 лет и более) сохраняться в почве, воздействовать на почвенную фауну и переходить в произрастающие растения, включаясь, таким образом, в пищевые цепи. ХОП чаще встречаются в листовых овощах (60 %) по сравнению с остальными овощными культурами. Наибольшие концентрации ХОП установлены у капусты, картофеля, тыквы, фасоли обыкновенной, наименьшие в баклажане, редисе. В овощах, собранных поздней осенью, содержание ХОП значительно ниже, чем собранных в сентябре. При этом растения, выращиваемые при высоком увлажнении почвы, более интенсивно и быстро усваивают пестициды, чем растущие на суше.
ХОП обладают эмбриотоксическим действием, вызывают пороки развития и мутагенные изменения. Некоторые из ХОП являются канцерогенами и аллергенами, что явилось основанием для ограничения либо запрещения их применения в отдельных регионах России.
Фосфорорганические пестициды (ФОП). ФОП - одна из наиболее распространенных и многочисленных групп пестицидов. К ним относятся афуган, актеллик, дибром, карбофос, бромофос, фталофос, хлорофос, цидиал и др. Большинство ФОП слаборастворимы в воде, по стойкости в окружающей среде ФОП значительно уступают ХОП. Однако некоторые из них сохраняют свои токсические свойства в почве и на растениях в течение нескольких месяцев и более, в результате чего, возможно их поступление в организм человека с продуктами питания, воздухом и водой. Боле устойчивы остаточные количества ФОП в плодах цитрусовых. Это объясняется их растворением в маслах кожуры плодов. Кроме того, ФОП присутствуют в течение довольно длительного времени хранящихся продуктах питания, например в зерне.
Хотя ФОП не накапливаются в организме так интенсивно, как ХОП, они все же обладают кумулятивными свойствами.
Симптомы хронических отравлений и острой интоксикации ФОП сходны между собой. Они выражаются в головной боли, ухудшении памяти, нарушении сна, дезориентации в пространстве, снижении роговичных рефлексов. Для некоторых ФОП характерны невриты и парезы.
Ртутьорганические пестициды (РОП). Они относятся к сильно действующим ядовитым веществам или высокотоксичным препаратам для теплокровных животных и человека. Их применяют ограниченно - только для обработки семян в борьбе с бактериальными и грибными заболеваниями.
В некоторых странах, например в России, Германии и Японии, применение их запрещено. Опасность этих препаратов для людей связана не только с их высокой токсичностью, но и с летучестью, вследствие которой пары ртути образуются при комнатной и более низкой температуре, что может привести к тяжелым отравлениям.
Классификация:
1.По способу проникновения:
Контактные
Кишечные
Фумигантные
Системные (попадают в растения, передвигаются по сосудистой системе растений)
2.Гигиеническая классификация:
А) По химическому строению:
Хлорорганические соединения
Фосфорорганические соединения
Ртутьорганические
Карбонаты
Медьсодержащие
Серосодержащие
Фторсодержащие
Производные мочевины
Б) По назначению:
Инсектициды (для истребления насекомых)
Зооциды (для уничтожения грызунов)
Гербициды (для уничтожения сорняков)
Акарициды (уничтожение птиц)
В) По токсичности:
Сильнодействующие
Высокотоксичные
Среднетоксичные
Низкотоксичные
Г) По токсичности для кожи:
Резко выраженные
Выражены
Слабо выраженные
Д) По степени летучести:
Очень опасные
Малоопасные
Коэффициент кумуляции – отношение суммарных средних доз полученных при повторном введении, к LP-50 при однократном введении.
Е) По стойкости:
Очень стойкие (свыше 2-х лет)
Умеренно (в течение 1 месяца)
Мало (в течение 1 месяца)
32. На эффективность снижения остаточных количеств (ОК) пестицидов влияет характер распределения их в разных частях растений. Известно, что основное количество ФОП и ХОП концентрируется в кожуре плодов и овощей или на ее поверхности, практически не проникая внутрь плода. Следовательно, начальным этапом промышленной и кулинарной переработки фруктов, овощей и ягод является их мойка. Она может осуществляться водой, растворами щелочей, поверхностно-активными веществами. Однако мойка малоэффективна, когда пищевое сырье содержит препараты или вещества, обладающие липофильными свойствами и прочно связывающихся с восками кутикулы. производные карбаминовой и тиокарбаминовой кислот, оловоорганические соединения в противоположность этому достаточно хорошо смываются водой. Эффективность мойки значительно повышается при использовании салфеток, а также различных моющих средств, удаляющих жиры и воски
Традиционные процессы изготовления квашеных, маринованных капусты, огурцов, томатов, яблок не приводят к снижению загрязнения ОК ФОП, устойчивых в кислой среде (метафос, хлорофос и др.).
В процессе сушки в зависимости от ее характера, вида сырья свойств препаратов может происходить или концентрирование остатков пестицидов или их удаление и разрушение. Заметно концентрируются, например, ОК перметрина при высушивании яблок: (2500 ... 3000%), омайта в цитрусовых (800%), бобовых (630%), винограда (250%).
При переработке зерновых культур ОК пестицидов неравномерно распределяются в различных фракциях помола. Наибольшие количестве загрязнителей обнаруживаются обычно в отрубях, наименьшие - в муке тонкого помола.
Скорость деструкции ОК пестицидов в хранящихся продуктах зависит от условий. Температурные параметры, влажность среды, продолжительность хранения могут в значительной мере варьировать в зависимости от вида продукта, его назначения и других условий.
При низких температурах (минус 18 ... минус 23 ºС) снижение ОК обычно бывает незначительным даже в тех случаях, когда длительность хранения превышает 2 года.
С повышением температуры степень деструкции увеличивается. При 2 ...10ºC ОК фенсульфотиона снижались, в корнеплодах на 52 ... 92%.
С увеличением длительности хранения деструкция пестицидов повышается. Так, ОК паратиона в кетчупе были стабильны на протяжении 4 мес, а через 6 мес снижались на 93%.
В бытовых условиях мойка перед закладкой на хранение может способствовать более быстрому снижению уровня остаточных количеств: при хранении в течение 3...6 дней немытых томатов разрушалось 30% ботрана, а в мытых - 93%. Однако иногда за счет потери влаги хранящихся продуктов уровень ОК может повышаться.
Остаточное содержание пестицидов в мясных и молочных продуктах можно снизить путем их термической обработки. Наиболее эффективным в этом отношении является отваривание мяса в воде. При этом необходимо помнить о возможности перехода ОК пестицидов в бульон, а также иметь в виду, что некоторые пестициды могут в процессе варки трансформироваться с образованием более токсичных соединений.
Таким образом, защита человека от вредного воздействия пестицидов эффективно обеспечивается барьером гигиенических нормативов и регламентов, но в результате их несоблюдения могут возникать острые и хронические отравления и другие нарушения здоровья.
33. В зависимости от химического состава различают удобрения азотные, фосфорные, калийные, известковые, микроудобрения, бактериальные, комплексные и др. Условно их можно подразделить на минеральные и органические. Необходимость в удобрениях обусловлена тем, что естественный круговорот азота, фосфора, калия и других питательных для растений соединений не может восполнить потерь этих биоэлементов, уносимых из почвы с урожаем.
Азот играет очень важную роль в жизнедеятельности растений как компонент белков, нуклеиновых кислот, витаминов, других биологически активных веществ. Азотные удобрения, в зависимости от формы соединения азота, существуют в следующих видах:
– аммиачные – азот присутствует в виде свободного аммиака (жидкий, водный, безводный);
– аммонийные – азот представлен ионом аммония (сульфат аммония);
– нитратные – азот находится в составе остатка азотной кислоты (натриевая и кальциевая селитры);
– аммонийнонитратные – содержат азот в аммонийной и нитратной формах (аммиачная селитра);
– амидные – представлены мочевиной – амидом карбаминовой кислоты, превращающимся в почве под воздействием уреазы бактерий в углекислый аммоний;
К медленнодействующим азотным удобрениям относятся мочевиноформальдегидные, мочевиноальдегидные, изобутилдиендимочевина, оксамид и некоторые другие. Нитратная форма удобрений в допустимых дозах способствует образованию в растениях аскорбиновой кислоты и кальция, аммонийная – фосфора.
Фосфорные удобрения различаются количеством оксида фосфора Р2О5, один из самых распространенных видов – суперфосфат. Накопление в почве и растениях чрезмерного количества Р2О5 тормозит протекающие в них биологические процессы.
Калийные удобрения – калийная соль (калий хлористый), калиймагнезиальное удобрение (КСl+NaCl+MgSO4), калийно-аммиачная селитра (КNО3+NH4Cl) и др. Калий не входит в органический состав веществ растений, он активно участвует в углеводном и белковом обменах.
Нитраты, нитриты, нитрозамины. Нитраты широко распространены в природе, они являются нормальными метаболитами любого живого организма (в организме человека в сутки образуется и используется в обменных процессах более 100 мг нитратов). Однако при потреблении в повышенном количестве нитраты (NO3-) в пищеварительном тракте частично восстанавливаются до нитритов (NO2-), которые взаимодействуют с гемоглобином крови с образованием метгемоглобина, неспособного связывать и переносить кислород. Хроническое воздействие нитритов приводит к снижению в организме витаминов А, Е, С, некоторых витаминов группы В. Кроме того, из нитритов в присутствии различных аминов могут образовываться N-нитрозамины, 80% из которых обладают канцерогенным, мутагенным, тератогенным действием.
Основными источниками поступления нитратов и нитритов в организм человека являются, в первую очередь, растительные продукты. Помимо растений, источниками нитратов и нитритов для человека являются мясные продукты, а также колбасы, рыба, сыры, в которые добавляют нитрит натрия или калия в качестве пищевой добавки – как консервант или для сохранения привычного красного цвета мясопродуктов.
