Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Органы выделения.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
56.62 Кб
Скачать

4. Кровоснабжение почек. Особенности кровоснабжения коркового и мозгового слоев почки. Саморегуляция почечного кровотока.

В обычных условиях через обе почки, масса которых составляет лишь около 0,43 % от массы тела здорового человека, проходит от 1/5 до 1/44 крови, поступающей из сердца в аорту. Кровоток по корковому веществу почки достигает 4—5 мл/мин на 1 г ткани; это наиболее высокий уровень органного кровотока. Особенность почечного кровотока состоит в том, что в условиях изменения системного артериального давления в широких пределах (от 90 до 190 мм рт. ст.) он остается постоянным. Это обусловлено специальной системой саморегуляции кровообращения в почке.

Короткие почечные артерии отходят от брюшного отдела аорты, разветвляются в почке на все более мелкие сосуды, и одна приносящая (афферентная) артериола входит в клубочек. Здесь она распадается на капиллярные петли, которые, сливаясь, образуют выносящую (эфферентную) артериолу, по которой кровь оттекает от клубочка. Диаметр эфферентной артериолы уже, чем афферентной. Вскоре после отхождения от клубочка эфферентная артериола вновь распадается на капилляры, образуя густую сеть вокруг проксимальных и дистальных извитых канальцев. Таким образом, большая часть крови в почке дважды проходит через капилляры — вначале в клубочке, затем у канальцев. Отличие кровоснабжения юкстамедуллярного нефрона заключается в том, что эфферентная артериола не распадается на околоканальцевую капиллярную сеть, а образует прямые сосуды, спускающиеся в мозговое вещество почки. Эти сосуды обеспечивают кровоснабжение мозгового вещества почки; кровь из околоканальцевых капилляров и прямых сосудов оттекает в венозную систему и по почечной вене поступает в нижнюю полую вену.

 

5. Физиологические методы исследования функции почек. Коэффициент очищения (клиренс).

Измерение скорости клубочковой фильтрации. Для расчета объема жидкости, фильтруемой в 1 мин в почечных клубочках (скорость клубочковой фильтрации), и ряда других показателей процесса мочеобразования используют методы и формулы, основанные на принципе очищения (иногда их называют «клиренсовые методы», от английского слова clearance — очищение). Для измерения величины клубочковой фильтрации используют физиологически инертные вещества, не токсичные и не связывающиеся с белком в плазме крови, свободно проникающие через поры мембраны клубочкового фильтра из просвета капилляров вместе с безбелковой частью плазмы. Следовательно, концентрация этих веществ в клубочковой жидкости будет такой же, как в плазме крови. Это вещества не должны реабсорбироваться и секретироваться в почечных канальцах, тем самым с мочой будет выделяться все количество данного вещества, поступившего в просвет нефрона с ультрафильтратом в клубочках. К веществам, используемым для измерения скорости клубочковой фильтрации, относятся полимер фруктозы инулин, маннитол, полиэтиленгликоль-400, креатинин.

Рассмотрим принцип очищения на примере измерения объема клубочковой фильтрации с помощью инулина. Количество профильтровавшегося в клубочках инулина (In) равно произведению объема фильтрата (СIn) на концентрацию в нем инулина (она равна его концентрации в плазме крови, РIN). Выделившееся за то же время с мочой количество инулина равно произведению объема экскретированной мочи (V) на концентрацию в ней инулина (UIn).

Так как инулин не реабсорбируется и не секретируется, то количество профильтровавшегося инулина (С∙РIn), равно количеству выделившегося (V- UIn), откуда:

 

СIn= UIn∙ V/ РIn

Эта формула является основной для расчета скорости клубочковой фильтрации. При использовании других веществ для измерения скорости клубочковой фильтрации инулин в формуле заменяют на анализируемое вещество и рассчитывают скорость клубочковой фильтрации данного вещества. Скорость фильтрации жидкости вычисляют в мл/мин; для сопоставления величины клубочковой фильтрации у людей различных массы тела и роста ее относят к стандартной поверхности тела человека (1,73 м ). В норме у мужчин в обеих почках скорость клубочковой фильтрации на 1,73 мсоставляет около 125 мл/мин, у женщин — приблизительно 110 мл /мин.

Измеренная с помощью инулина величина фильтрации в клубочках, называемая также коэффициентом очищения от инулина (или инулиновым клиренсом), показывает, какой объем плазмы крови освобожден от инулина за это время. Для измерения очищения от инулина необходимо непрерывно вливать в вену раствор инулина, чтобы в течение всего исследования поддерживать постоянной его концентрацию в крови. Очевидно, что это весьма сложно и в клинике не всегда осуществимо, поэтому чаще используют креатинин — естественный компонент плазмы, по очищению от которого можно было бы судить о скорости клубочковой фильтрации, хотя с его помощью скорость клубочковой фильтрации измеряется менее точно, чем при инфузии инулина. При некоторых физиологических и особенно патологических состояниях креатинин может реабсорбироваться и секретироваться, тем самым очищение от креатинина может не отражать истинной величины клубочковой фильтрации.

У здорового человека вода попадает в просвет нефрона в результате фильтрации в клубочках, реабсорбируется в канальцах, и вследствие этого концентрация инулина растет. Концентрационный показатель инулина UIn/PIn указывает, во сколько раз уменьшается объем фильтрата при его прохождении по канальцам. Эта величина имеетважное значение для суждения об особенностях обработки любого вещества в канальцах, для ответа на вопрос о том, подвергается ли вещество реабсорбции или секретируется клетками канальцев. Если концентрационный показатель данного вещества X Ux/Px меньше, чем одновременно измеренная величина UInIn, то это указывает на реабсорбцию вещества X в канальцах, если Uхх больше, чем UIn/PInто это указывает на его секрецию. Отношение концентрационных показателей вещества X и инулина Uхх :UIn/PIn носит название экскретируемой фракции (EF).

 

6. Функции клубочков, строение клубочкового фильтра. Морфо-функциональные особенности почек у детей.

 

Мысль о фильтрации воды и растворенных веществ как первом этапе мочеобразования была высказана в 1842 г. немецким физиологом К. Людвигом. В 20-х годах XX столетия американскому физиологу А. Ричардсу в прямом эксперименте удалось подтвердить это предположение — с помощью микроманипулятора пунктировать микропипеткой клубочковую капсулу и извлечь из нее жидкость, действительно оказавшуюся ультрафильтратом плазмы крови.

Ультрафильтрация воды и низкомолекулярных компонентов из плазмы крови происходит через клубочковый фильтр. Этот фильтрационный барьер почти непроницаем для высокомолекулярных веществ. Процесс ультрафильтрации обусловлен разностью между гидростатическим давлением крови, гидростатическим давлением в капсуле клубочка и онкотическим давлением белков плазмы крови. Общая поверхность капилляров клубочка больше общей поверхности тела человека и достигает 1,5 м2 на 100 г массы почки. Фильтрующая мембрана (фильтрационный барьер), через которую проходит жидкость из просвета капилляра в полость капсулы клубочка, состоит из трех слоев: эндотелиальных клеток капилляров, базальной мембраны и эпителиальных клеток висцерального (внутреннего) листка капсулы— подоцитов.

Клетки эндотелия, кроме области ядра, очень истончены, толщина цитоплазмы боковых частей клетки менее 50 нм; в цитоплазме имеются круглые или овальные отверстия (поры) размером 50—100 нм, которые занимают до 30 поверхности клетки. При нормальном кровотоке наиболее крупные белковые молекулы образуют барьерный слой на поверхности пор эндотелия и затрудняют движение через них альбуминов, ограничивая тем самым прохождение форменных элементов крови и белков через эндотелий. Другие компоненты плазмы крови и вода могут свободно достигать базальной мембраны.

Базальная мембрана является одной из важнейших составных частей фильтрующей мембраны клубочка. У человека толщина базальной мембраны 250—400 нм. Эта мембрана состоит из трех слоев — центрального и двух периферических. Поры в базальной мембране  препятствуют прохождению молекул диаметром больше 6 нм.

Наконец, важную роль в определении размера фильтруемых веществ играют щелевые мембраны между «ножками» подоцитов. Эти эпителиальные клетки обращены в просвет капсулы почечного клубочка и имеют отростки — «ножки», которыми прикрепляются к базальной мембране. Базальная мембрана и щелевые мембраны между этими «ножками» ограничивают фильтрацию веществ, диаметр молекул которых больше 6,4 нм (т. е. не проходят вещества, радиус молекулы которых превышает 3,2 нм). Поэтому в просвет нефрона свободно проникает инулин (радиус молекулы 1,48 нм, молекулярная масса около 5200), может фильтроваться лишь 22 % яичного альбумина (радиус молекулы 2,85 нм, молекулярная масса 43500), 3 % гемоглобина (радиус молекулы 3,25 нм, молекулярная масса 68 000 и меньше 1 % сывороточного альбумина (радиус молекулы 3,55 нм, молекулярная масса 69 000).

Прохождению белков через клубочковый фильтр препятствуют отрицательно заряженные молекулы — полианионы, входящие в состав вещества базальной мембраны, и сиалогликопротеиды в выстилке, лежащей на поверхности подоцитов и между их «ножками». Ограничение для фильтрации белков, имеющих отрицательный заряд, обусловлено размером пор клубочкового фильтра и их электронегативностью. Таким образом, состав клубочкового фильтрата зависит от свойств эпителиального барьера и базальной мембраны. Естественно, размер и свойства пор фильтрационного барьера вариабельны, поэтому в обычных условиях в ультрафильтрате обнаруживаются лишь следы белковых фракций, характерных для плазмы крови. Прохождение достаточно крупных молекул через поры зависит не только от их размера, но и конфигурации молекулы, ее пространственного соответствия форме поры.