- •Задачі, які вирішує криптографія
- •Класифікація криптоаналітичних атак
- •Складність криптоаналітичної атаки
- •Брутальні атаки та їх обмеження
- •Частотний крипто аналіз
- •6. Словникова атака.
- •7. Вибір довжини ключа для симетричних та несиметричних алгоритмів шифрування.
- •8. Принципи вибору ключів для шифрування.
- •9. Способи обміну ключами.
- •10. Способи зберігання ключів. Контроль їх зберігання та використання.
- •11. Тривалість та зберігання ключів.
- •12 Критерії вибору криптологічного алгоритму
- •13. Канальне шифрування
- •14. Кінцеве шифрування (наскрізне).
- •15. Поєднання властивостей обох методів
- •16. Особливості шифрування файлів
- •17. Переваги та недоліки апаратного шифрування
- •19.Стиснення даних при шифруванні
- •Опис алгоритму.
- •Опис алгоритму.
- •1.2.1.Процес шифрування.
- •Розподіл ключів.
- •27) Технічні особливості програмної та апартної реалізації idea
- •28) Головні кроки idea
- •29) Головний ключ idea та генерація підключів
- •30) Загальна характеристика та принцип роботи rsa
- •31. Особливості шифрування/дешифрування на компютері алгоритмом rsa
- •32. Стійкість алгоритму rsa до криптоаналізу
- •34. Вимоги до хеш-функцій на прикладі алгоритму xor
- •35. Конфіденційність, аутентифікація, цифровий підпис: загальна характеристика.
- •36 Реалізація цифрового підпису з допомогою несиметричних шифрів
- •37 Публічне оголошення відкритих ключів
- •40 Сертифікати відкритих ключів
Складність криптоаналітичної атаки
Складність криптографічних атак полягає у вічній боротьбі криптоаналітиків із здатністю криптосистеми протистояти атакам називається, що називається стійкістю.
З вікіпедії: «Криптографічна стійкість виміряється тим, скільки знадобиться часу і ресурсів, щоб із шифртекста відновити вихідний відкритий текст. Результатом стійкої криптографії є шифртекст, який винятково складно зламати без володіння визначеними інструментами дешифрування. Але наскільки складно? Використовуючи весь обчислювальний потенціал сучасної цивілізації — навіть мільярд комп'ютерів, що виконують мільярд операцій у секунду — неможливо дешифрувати результат стійкої криптографії до кінця існування Всесвіту.» - про вічність – хєрня, але щось похоже можна написати.
Криптографічна стійкість, криптостійкість (cryptographic strength) - стійкість шифросистеми проти всіх відомих видів криптоаналізу.
Криптостійкістю називається характеристика шифру, визначальна його стійкість до дешифрування. Звичайно ця характеристика визначається періодом часу, необхідним для дешифрування.
Тут можна переписати з комплекту про тривалість взлому різних типів ключів. Час таких атак і т.п. В конспекті то є
Брутальні атаки та їх обмеження
Brute force("груба силою")- перебір всіх можливих варіантів (ключів).
Полный перебор (или метод «грубой силы», англ. brute force) — метод решения задачи путем перебора всех возможных вариантов. Сложность полного перебора зависит от количества всех возможных решений задачи. Если пространство решений очень велико, то полный перебор может не дать результатов в течение нескольких лет или даже столетий.
В криптографии на вычислительной сложности полного перебора основывается оценка криптостойкости шифров. В частности, шифр считается криптостойким, если не существует метода «взлома» существенно более быстрого чем полный перебор всех ключей. Криптографические атаки, основанные на методе полного перебора, являются самыми универсальными, но и самыми долгими.
Обмеження? В часі перебору, в затрачаємих і потрібних на то ресурсах
Можна написати про круті методи брутфорсу, тіпа паралельних обчислень і радужних таблиць, але то можна і не писати.
Паралельні обчислення — це форма обчислень, в яких кілька дій проводяться одночасно. Грунтуються на тому, що великі задачі можна розділити на кілька менших, кожну з яких можна розв'язати незалежно від інших.
Радужные таблицы используются для вскрытия паролей, преобразованных при помощи сложнообратимой хеш-функции, а также для атак на симметричные шифры на основе известного открытого текста.
Радужная таблица создается построением цепочек возможных паролей. Каждая цепочка начинается со случайного возможного пароля, затем подвергается действию хеш-функции и функции редукции. Данная функция преобразует результат хеш-функции в некоторый возможный пароль (например, если мы предполагаем, что пароль имеет длину 64 бита, то функцией редукции может быть взятие первых 64 бит хеша, побитовое сложение всех 64-битных блоков хеша и т. п.). Промежуточные пароли в цепочке отбрасываются и в таблицу записываются только первый и последний элементы цепочек. Создание таких таблиц требует больше времени, чем нужно для создания обычных таблиц поиска, но значительно меньше памяти (вплоть до сотен гигабайт, при объеме для обычных таблиц в N слов для радужных нужно всего порядка N2/3). При этом они требуют хоть и больше времени (по сравнению с обычными методами) на восстановление исходного пароля, но на практике более реализуемы.
