- •Эконометрика как наука: цель, задачи, предмет и метод. Понятие эконометрической модели
- •Типы данных и виды переменных в эконометрических моделях
- •Этапы эконометрического моделирования.
- •Понятие генеральной и выборочной совокупности значений случайной величины. Числовые характеристики генеральной и выборочной совокупности.
- •Зависимость (независимость) случайных величин. Функциональная и статистическая зависимости. Ковариация и корреляция св. Выборочные и теоретические коэффициенты ковариации и корреляции.
- •Основные принципы и общая схема проверки статистических гипотез. Понятие уровня значимости и числа степеней свободы. Примеры критериев статистического теста.
- •Оценивание значимости коэффициента парной корреляции с помощью t-критерия Стьюдента.
- •Корреляционно – регрессионный анализ: предпосылки и этапы проведения.
- •Модель парной линейной регрессии: спецификация, условия построения.
- •Метод наименьших квадратов. Предпосылки применения метода для оценивания регрессионной модели. Система нормальных уравнений и ее решение.
- •Вопрос 11.Методы оценивания
- •Точечные оценки параметров модели парной линейной регрессии, их свойства и экономическая интерпретация. Связь оценки коэффициента регрессии с выборочным значением коэффициента корреляции.
- •Точечные оценки параметров модели парной линейной регрессии, их свойства и экономическая интерпретация. Связь оценки коэффициента регрессии с выборочным значением коэффициента корреляции.
- •Стандартная ошибка регрессии, стандартные ошибки оценок параметров модели парной линейной регрессии, их свойства.
- •14/ Оценивание значимости коэффициентов выборочной функции парной линейно регрессии с помощью т-критерия Стьюдента.
- •15. Коэффициент детерминации и его значение. Проверка гипотез, относящихся к оценке адекватности регрессионной модели в целом.
- •16. Интервальные оценки параметров. Построение доверительных интервалов для параметров модели парной линейной регрессии.
- •Вопрос 17 Модели регрессии, нелинейные по факторным переменным
- •Модели регрессии, нелинейные по оцениваемым коэффициентам
- •18. Задача множественного корреляционно – регрессионного анализа. Спецификация эконометрической модели множественной регрессии. Условия Гаусса – Маркова для модели множественной регрессии.
- •19. Отбор факторных признаков для включения в модель множественной линейной регрессии.
- •6. Об.Переменные д.Б. Сильно коррелированны с рез. Переменной.
- •20. Явление мультиколлинеарности факторов в регрессионной модели. Способы определения наличия мультиколлинеарности и ее устранения.
- •Методы устранения мультиколлинеарности
- •2. Метод дополнительных регрессий
- •3. Метод последовательного присоединения
- •23. Проверка адекватности модели множественной регрессии
- •24. Гомоскедастичность и гетероскедастичность ряда остатков регрессионной модели.
- •Последствия гетероскедастичности
- •Обнаружение гетероскедастичности
- •Тест Голдфелда—Квандта.
- •Тест ранговой корреляции Спирмена
- •Устранение гетероскедастичности
- •25. Числовые характеристики модели множественной линейной регрессии
- •27. Задача идентифицируемости системы одновременных уравнений. Необх. И достаточ. Условие идентифицируемости уравнений системы.
- •Рассмотрим типы систем эконометрических уравнений.
- •1. Система независимых регрессионных уравнений (внешне не связанных)
- •2. Система рекурсивных уравнений
- •28. Разновидности мнк для оценивания параметров многомерных регрессионных моделей.
- •Двухшаговый метод наименьших квадратов (дмнк)
- •29. Компоненты временного ряда
- •30/ Аддитивная и мультипликативные модели временного ряда.
- •31/ Явления автокорреляции и авторегрессии временного ряда.
- •32/ Моделирование тенденции временного ряда. Основные типы трендов и их распознавание.
- •33/ Эконометрическое прогнозирование, виды прогнозов. Средняя погрешность прогнозирования.
- •34/ Прогнозирование по трендам. Качество прогноза.
Модель парной линейной регрессии: спецификация, условия построения.
1 единственная ОП, 1 результирующая переменная
Пусть
исходные данные представлены выборкой
объема n,
содержащей пары наблюдаемых значений
(xi,
yi),
i
=
Уравнение
парной линейной регрессии для ГС имеет
вид yi
=
,
где х - ОП, у- результирующая переменная,
Е- ошибка регрессии, в0 и в1- параметры
уравнения.
На
основе обработки данных выборочного
наблюдения получают выборочное уравнение
регрессии, которое записывается в виде:
yi
=
+
+
, где
,
-
выборочные оценки коэф в1 и в0 функции
регрессии ГС.
Модель регрессии или уравнение регрессии позволяет количественно оценить взаимосвязь между исследуемыми переменными.
Задача регрессионного анализа состоит в том, чтобы по данным наблюдений определить такую функцию ỹ = f (x), которая наилучшим образом описывала исследуемую зависимость между переменными.
Модель линейна: по ОП, параметрам и по случайным ошибкам.
При построении нормальной линейной модели парной регрессии учитываются пять условий:
1) факторная переменная xi – неслучайная или детерминированная величина, которая не зависит от распределения случайной ошибки модели регрессии εi;
2) математическое ожидание случайной ошибки модели регрессии равно нулю во всех наблюдениях:
3) дисперсия случайной ошибки модели регрессии постоянна для всех наблюдений:
4) между значениями случайных ошибок модели регрессии в любых двух наблюдениях отсутствует систематическая взаимосвязь, т. е. случайные ошибки модели регрессии не коррелированны между собой (ковариация случайных ошибок любых двух разных наблюдений равна нулю): Cov(εi,εj)=E(εi,εj)=0 (). Это условие выполняется в том случае, если исходные данные не являются временными рядами;
5) на основании третьего и четвёртого условий часто добавляется пятое условие, заключающееся в том, что случайная ошибка модели регрессии – это случайная величина, подчиняющейся нормальному закону распределения с нулевым математическим ожиданием и дисперсией G2: εi~N(0, G2).
Общий вид нормальной линейной модели парной регрессии в матричной форме:
Y= X* β+ ε,
где
– случайный вектор-столбец значений результативной переменной размерности n x 1;
– матрица значений факторной переменной размерности n x 2. Первый столбец является единичным, потому что в модели регрессии коэффициент β0 умножается на единицу;
– вектор-столбец неизвестных коэффициентов модели регрессии размерности 2 x 1;
– случайный вектор-столбец ошибок модели регрессии размерности n x 1.
Условия построения нормальной линейной модели парной регрессии, записанные в матричной форме:
1) факторная переменная xi – неслучайная или детерминированная величина, которая не зависит от распределения случайной ошибки модели регрессии βi;
2) математическое ожидание случайной ошибки модели регрессии равно нулю во всех наблюдениях:;
3) третье и четвёртое условия можно записать через ковариационную матрицы случайных ошибок нормальной линейной модели парной регрессии:
где G2 – дисперсия случайной ошибки модели регрессии ε;
In – единичная матрица размерности n x n.
4) случайная ошибка модели регрессии подчиняется нормальному закону распределения: εi~N(0, G2).
