- •Эконометрика как наука: цель, задачи, предмет и метод. Понятие эконометрической модели
- •Типы данных и виды переменных в эконометрических моделях
- •Этапы эконометрического моделирования.
- •Понятие генеральной и выборочной совокупности значений случайной величины. Числовые характеристики генеральной и выборочной совокупности.
- •Зависимость (независимость) случайных величин. Функциональная и статистическая зависимости. Ковариация и корреляция св. Выборочные и теоретические коэффициенты ковариации и корреляции.
- •Основные принципы и общая схема проверки статистических гипотез. Понятие уровня значимости и числа степеней свободы. Примеры критериев статистического теста.
- •Оценивание значимости коэффициента парной корреляции с помощью t-критерия Стьюдента.
- •Корреляционно – регрессионный анализ: предпосылки и этапы проведения.
- •Модель парной линейной регрессии: спецификация, условия построения.
- •Метод наименьших квадратов. Предпосылки применения метода для оценивания регрессионной модели. Система нормальных уравнений и ее решение.
- •Вопрос 11.Методы оценивания
- •Точечные оценки параметров модели парной линейной регрессии, их свойства и экономическая интерпретация. Связь оценки коэффициента регрессии с выборочным значением коэффициента корреляции.
- •Точечные оценки параметров модели парной линейной регрессии, их свойства и экономическая интерпретация. Связь оценки коэффициента регрессии с выборочным значением коэффициента корреляции.
- •Стандартная ошибка регрессии, стандартные ошибки оценок параметров модели парной линейной регрессии, их свойства.
- •14/ Оценивание значимости коэффициентов выборочной функции парной линейно регрессии с помощью т-критерия Стьюдента.
- •15. Коэффициент детерминации и его значение. Проверка гипотез, относящихся к оценке адекватности регрессионной модели в целом.
- •16. Интервальные оценки параметров. Построение доверительных интервалов для параметров модели парной линейной регрессии.
- •Вопрос 17 Модели регрессии, нелинейные по факторным переменным
- •Модели регрессии, нелинейные по оцениваемым коэффициентам
- •18. Задача множественного корреляционно – регрессионного анализа. Спецификация эконометрической модели множественной регрессии. Условия Гаусса – Маркова для модели множественной регрессии.
- •19. Отбор факторных признаков для включения в модель множественной линейной регрессии.
- •6. Об.Переменные д.Б. Сильно коррелированны с рез. Переменной.
- •20. Явление мультиколлинеарности факторов в регрессионной модели. Способы определения наличия мультиколлинеарности и ее устранения.
- •Методы устранения мультиколлинеарности
- •2. Метод дополнительных регрессий
- •3. Метод последовательного присоединения
- •23. Проверка адекватности модели множественной регрессии
- •24. Гомоскедастичность и гетероскедастичность ряда остатков регрессионной модели.
- •Последствия гетероскедастичности
- •Обнаружение гетероскедастичности
- •Тест Голдфелда—Квандта.
- •Тест ранговой корреляции Спирмена
- •Устранение гетероскедастичности
- •25. Числовые характеристики модели множественной линейной регрессии
- •27. Задача идентифицируемости системы одновременных уравнений. Необх. И достаточ. Условие идентифицируемости уравнений системы.
- •Рассмотрим типы систем эконометрических уравнений.
- •1. Система независимых регрессионных уравнений (внешне не связанных)
- •2. Система рекурсивных уравнений
- •28. Разновидности мнк для оценивания параметров многомерных регрессионных моделей.
- •Двухшаговый метод наименьших квадратов (дмнк)
- •29. Компоненты временного ряда
- •30/ Аддитивная и мультипликативные модели временного ряда.
- •31/ Явления автокорреляции и авторегрессии временного ряда.
- •32/ Моделирование тенденции временного ряда. Основные типы трендов и их распознавание.
- •33/ Эконометрическое прогнозирование, виды прогнозов. Средняя погрешность прогнозирования.
- •34/ Прогнозирование по трендам. Качество прогноза.
Этапы эконометрического моделирования.
Выделяют семь основных этапов эконометрического моделирования:
1) постановочный этап, в процессе осуществления которого определяются конечные цели и задачи исследования, а также совокупность включённых в модель факторных и результативных экономических переменных. При этом включение в эконометрическую модель той или иной переменной должно быть теоретически обоснованно и не должно быть слишком большим. Между факторными переменными не должно быть функциональной или тесной корреляционной связи, потому что это приводит к наличию в модели мультиколлинеарности и негативно сказывается на результатах всего процесса моделирования;
2) априорный этап, в процессе осуществления которого проводится теоретический анализ сущности исследуемого процесса, а также формирование и формализация известной до начала моделирования (априорной) информации и исходных допущений, касающихся в частности природы исходных статистических данных и случайных остаточных составляющих в виде ряда гипотез;
3) этап параметризации (моделирования), в процессе осуществления которого выбирается общий вид модели и определяется состав и формы входящих в неё связей, т. е. происходит непосредственно моделирование.
К основным задачам этапа параметризации относятся:
а) выбор наиболее оптимальной функции зависимости результативной переменной от факторных переменных. При возникновении ситуации выбора между нелинейной и линейной функциями зависимости, предпочтение всегда отдаётся линейной функции, как наиболее простой и надёжной;
б) задача спецификации модели, в которую входят такие подзадачи, как аппроксимация математической формой выявленных связей и соотношений между переменными, определение результативных и факторных переменных, формулировка исходных предпосылок и ограничений модели.
4) информационный этап, в процессе осуществления которого происходит сбор необходимых статистических данных, а также анализируется качество собранной информации;
5) этап идентификации модели, в ходе осуществления которого происходит статистический анализ модели и оцененивание неизвестных параметров.
6) этап оценки качества модели (верификация) в ходе осуществления которого проверяется достоверность и адекватность модели, т. е. определяется, насколько успешно решены задачи спецификации и идентификации модели, какова точность расчётов, полученных на её основе. Построенная модель должна быть адекватна реальному экономическому процессу. Если качество модели является неудовлетворительным, то происходит возврат ко второму этапу моделирования;
7) этап интерпретации результатов моделирования.
Понятие генеральной и выборочной совокупности значений случайной величины. Числовые характеристики генеральной и выборочной совокупности.
Выборочной совокупностью или просто выборкой называют часть ГС, отобранная для изучения, совокупность случайно отобранных объектов.
Генеральной совокупностью называют совокупность объектов, из которых производится выборка, совокупность всех возможных наблюдений.
Числовые характеристики – числа в сжатой форме, выражающие наиболее существенные черты распределения СВ.
Генеральной средней называют среднее арифметическое значение признака ГС
=
Генеральной
дисперсией называют срарифметич
квадратов отклонений значения признака
ГС от их ср знач. D
=
Генеральное ср квадр отклонение – квадратный корень из дисперсии
Выборочное среднее – срарифметич значение признака ВС.
Выборочной дисперсией называют срарифм квадрат отклонений наблюдаемых значений признака от их ср знач.
=
–
