Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Эконометрика ужс.docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
1.46 Mб
Скачать

Рассмотрим типы систем эконометрических уравнений.

1. Система независимых регрессионных уравнений (внешне не связанных)

В данном случае каждая зависимая переменная рассматривается как функция некоторого е набора факторов .

. (7.1)

Набор факторов в уравнениях (1) может варьировать. Каждое уравнение системы независимых уравнений может рассматриваться самостоятельно, а его параметры могут быть найдены на основе традиционного метода наименьших квадратов (МНК).

2. Система рекурсивных уравнений

В таких системах в одном из уравнений содержится единственная зависимая переменная , которая в следующем уравнении присутствует в качестве факторной переменной. В третье уравнение эти эндогенные переменные из предыдущих уравнений могут быть включены как факторные и т.д.

(7.2)

В данной системе каждое последующее уравнение наряду с факторными переменными включает в качестве факторов все зависимые переменные предшествующих уравнений. Каждое уравнение этой системы может рассматриваться самостоятельно, и его параметры определяются методом наименьших квадратов (МНК).

28. Разновидности мнк для оценивания параметров многомерных регрессионных моделей.

Коэффициенты структурной модели могут быть оценены разными способами в зависимости от вида системы одновременных уравнений. Наибольшее распространение в литературе получили следующие методы оценивания коэффициентов структурной модели:

  1. косвенный метод наименьших квадратов;

  2. двухшаговый метод наименьших квадратов;

  3. трехшаговый метод наименьших квадратов;

  4. метод максимального правдоподобия с полной информацией;

  5. метод максимального правдоподобия при ограниченной информации.

Рассмотрим сущность некоторых из этих методов.

Косвенный метод наименьших квадратов (КМНК)

Применяется в случае точно идентифицируемой структурной модели. Процедура применения КМНК предполагает выполнение следующих этапов:

  1. Для структурной модели строится приведенная форма модели.

  2. Для каждого уравнения приведенной формы традиционным МНК оцениваются приведенные коэффициенты .

  3. На основе коэффициентов приведенной формы находятся путем алгебраических преобразований параметры структурной модели.

Двухшаговый метод наименьших квадратов (дмнк)

Если система сверхидентифицируема, то КМНК не используется, ибо он не дает однозначных оценок для параметров структурной модели. В этом случае могут использоваться разные методы оценивания, среди которых наиболее распространенным и простым является двухшаговый метод (ДМНК).

Основная идея ДМНК состоит в следующем:

  • на основе приведенной формы модели получить для сверхидентифицируемого уравнения расчетные значения эндогенных переменных, содержащихся в правой части этого уравнения;

  • подставляя найденные расчетные значения эндогенных переменных вместо фактических значений, можно применить обычный МНК к структурной форме сверхидентифицируемого уравнения.

Метод получил название двухшагового МНК, ибо дважды используется МНК:

  • на первом шаге при определении параметров приведенной формы модели и нахождении на их основе оценок расчетных значений эндогенных переменных ; ;

  • на втором шаге применительно к структурному сверхидентифицируемому уравнению, когда вместо фактических значений эндогенных переменных рассматриваются их расчетные значения, найденные на предыдущем шаге.

Сверхидентифицируемая структурная модель может быть двух типов:

  • все уравнения системы сверхидентифицируемы;

  • система содержит наряду со сверхидентифицируемыми точно идентифицируемые уравнения.

Если все уравнения системы сверхидентифицируемые, то для оценки структурных коэффициентов каждого уравнения используется ДМНК. Если в системе есть точно идентифицируемые уравнения, то структурные коэффициенты по ним можно найти на основе косвенного МНК.Двухшаговыйметод, примененный к точно идентифицированным уравнениям дает такой же результат, что и косвенный МНК. Трехшаговый метод наименьших квадратов (ТМНК)

Трехшаговый метод наименьших квадратов применяется для оценки параметров системы одновременных уравнений в целом. Сначала к каждому уравнению применяется двухшаговый метод с целью оценить коэффициенты и случайные остатки каждого уравнения. Затем строится ковариационная матрица остатков и проводится ее оценка. После этого для оценивания коэффициентов всей системы применяется обобщенный метод наименьших квадратов. ТМНК является достаточно эффективным, но требует существенно больших вычислительных затрат. Более подробное описание можно найти в работе[1]1

Метод инструментальных переменных (МИП) применяется для оценивания уравнений, в которых регрессоры (факторы) коррелируют со свободными членами. Коррелированность между факторными переменными и случайными ошибками может быть вызвана разными причинами:

  • пропущенными переменными, которые находятся в корреляционной связи с факторными переменными;

  • ошибками измерений факторных переменных;

  • включением лагированной зависимой переменной при наличии автокоррелированности ошибок. В этом случае лаговые переменные скорее всего будут коррелировать с ошибками;

  • одновременные взаимосвязи между переменными (эндогенность переменных, включенных в правые части регрессионных уравнений).

Именно это явление оказывается характерным для систем одновременных уравнений;

Если между факторными переменными и случайными остатками имеется корреляционная зависимость ( , ), то нарушаются условия классической модели и оценки параметров, найденные по МНК будут смещенными и не состоятельными.