- •Эконометрика как наука: цель, задачи, предмет и метод. Понятие эконометрической модели
- •Типы данных и виды переменных в эконометрических моделях
- •Этапы эконометрического моделирования.
- •Понятие генеральной и выборочной совокупности значений случайной величины. Числовые характеристики генеральной и выборочной совокупности.
- •Зависимость (независимость) случайных величин. Функциональная и статистическая зависимости. Ковариация и корреляция св. Выборочные и теоретические коэффициенты ковариации и корреляции.
- •Основные принципы и общая схема проверки статистических гипотез. Понятие уровня значимости и числа степеней свободы. Примеры критериев статистического теста.
- •Оценивание значимости коэффициента парной корреляции с помощью t-критерия Стьюдента.
- •Корреляционно – регрессионный анализ: предпосылки и этапы проведения.
- •Модель парной линейной регрессии: спецификация, условия построения.
- •Метод наименьших квадратов. Предпосылки применения метода для оценивания регрессионной модели. Система нормальных уравнений и ее решение.
- •Вопрос 11.Методы оценивания
- •Точечные оценки параметров модели парной линейной регрессии, их свойства и экономическая интерпретация. Связь оценки коэффициента регрессии с выборочным значением коэффициента корреляции.
- •Точечные оценки параметров модели парной линейной регрессии, их свойства и экономическая интерпретация. Связь оценки коэффициента регрессии с выборочным значением коэффициента корреляции.
- •Стандартная ошибка регрессии, стандартные ошибки оценок параметров модели парной линейной регрессии, их свойства.
- •14/ Оценивание значимости коэффициентов выборочной функции парной линейно регрессии с помощью т-критерия Стьюдента.
- •15. Коэффициент детерминации и его значение. Проверка гипотез, относящихся к оценке адекватности регрессионной модели в целом.
- •16. Интервальные оценки параметров. Построение доверительных интервалов для параметров модели парной линейной регрессии.
- •Вопрос 17 Модели регрессии, нелинейные по факторным переменным
- •Модели регрессии, нелинейные по оцениваемым коэффициентам
- •18. Задача множественного корреляционно – регрессионного анализа. Спецификация эконометрической модели множественной регрессии. Условия Гаусса – Маркова для модели множественной регрессии.
- •19. Отбор факторных признаков для включения в модель множественной линейной регрессии.
- •6. Об.Переменные д.Б. Сильно коррелированны с рез. Переменной.
- •20. Явление мультиколлинеарности факторов в регрессионной модели. Способы определения наличия мультиколлинеарности и ее устранения.
- •Методы устранения мультиколлинеарности
- •2. Метод дополнительных регрессий
- •3. Метод последовательного присоединения
- •23. Проверка адекватности модели множественной регрессии
- •24. Гомоскедастичность и гетероскедастичность ряда остатков регрессионной модели.
- •Последствия гетероскедастичности
- •Обнаружение гетероскедастичности
- •Тест Голдфелда—Квандта.
- •Тест ранговой корреляции Спирмена
- •Устранение гетероскедастичности
- •25. Числовые характеристики модели множественной линейной регрессии
- •27. Задача идентифицируемости системы одновременных уравнений. Необх. И достаточ. Условие идентифицируемости уравнений системы.
- •Рассмотрим типы систем эконометрических уравнений.
- •1. Система независимых регрессионных уравнений (внешне не связанных)
- •2. Система рекурсивных уравнений
- •28. Разновидности мнк для оценивания параметров многомерных регрессионных моделей.
- •Двухшаговый метод наименьших квадратов (дмнк)
- •29. Компоненты временного ряда
- •30/ Аддитивная и мультипликативные модели временного ряда.
- •31/ Явления автокорреляции и авторегрессии временного ряда.
- •32/ Моделирование тенденции временного ряда. Основные типы трендов и их распознавание.
- •33/ Эконометрическое прогнозирование, виды прогнозов. Средняя погрешность прогнозирования.
- •34/ Прогнозирование по трендам. Качество прогноза.
24. Гомоскедастичность и гетероскедастичность ряда остатков регрессионной модели.
При практическом проведении регрессионного анализа с помощью МНК следует обратить серьезное внимание на проблемы, связанные с выполнимостью свойств случайных отклонений моделей. Для получения качественных оценок необходимо следить за выполнимостью предпосылок МНК (условий Гаусса — Маркова), так как при их нарушении МНК может давать оценки с плохими статистическими свойствами. Одной из ключевых предпосылок МНК является условие постоянства дисперсий случайных отклонений: дисперсия случайных отклонений еi постоянна. D(ei)=D(ej)=sigma2 для любых наблюдений i и j. Выполнимость данной предпосылки называется гомоскедастичностью (постоянством дисперсии отклонений). Невыполнимость данной предпосылки называется гетероскедастичностъю(непостоянством дисперсий отклонений).
Проблема гетероскедастичности характерна для перекрестных данных и довольно редко встречается при рассмотрении временных рядов. Это можно объяснить следующим. При перекрестных данных учитываются экономические субъекты (потребители, домохозяйства, фирмы, отрасли, страны и др.), имеющие различные доходы, размеры, потребности и т.д. В этом случае возможны проблемы, связанные с эффектом масштаба. Во временных рядах обычно рассматриваются одни и те же показатели в различные моменты времени (например, ВНП, чистый экспорт, темпы инфляции и т.д. в определенном регионе зa определенный период времени). Однако при увеличении (уменьшении) рассматриваемых показателей с течением времени может возникнуть проблема гетероскедастичности.
Последствия гетероскедастичности
При невыполнимости данной предпосылки (при гетероскедастичности) последствия применения МНК будут следующими.
1.Оценки коэффициентов по-прежнему останутся несмещенными и линейными.
2.Оценки не будут эффективными (т.е. они не будут иметь наименьшую дисперсию по сравнению с другими оценками данного параметра). Они не будут даже асимптотически эффективными. Увеличение дисперсии оценок снижает вероятность получения максимально точных оценок.
3.Дисперсии
оценок будут рассчитываться со смещением.
Смещенность появляется вследствие
того, что не объясненная уравнением
регрессии дисперсия S2
=
не является более несмещенной.
4.Вследствие вышесказанного все выводы, получаемые на основе соответствующихt- и F-статистик, а также интервальные оценки будут ненадежными. Следовательно, статистические выводы, получаемые при стандартных проверках качества оценок, могут быть ошибочными и приводить к неверным заключениям по построенной модели.
Обнаружение гетероскедастичности
Не существует какого-либо однозначного метода определения гетероскедастичности. Однако к настоящему времени для такой проверки разработано довольно большое число тестов и критериев для них. Наиболее популярные и наглядные: графический анализ отклонений, тест ранговой корреляции Спирмена, тест Парка, тест Глейзера, тест Голдфелда—Квандта.
Тест Голдфелда—Квандта.
Все n наблюдений упорядочиваем по величине X.
Выдвигаем гипотезы:
:
=
;
(т.е. гетероскедастичность сущ.)иH1:
D(εi)=
После этого всю упорядоченную выборку разбиваем на три подвыборки размерностей m, n-2m, m соответственно.
Оцениваем отдельные регрессии для первой подвыборки (m первых наблюдений) и для третьей подвыборки (m последних наблюдений), а средняяподвыборка исключается из рассмотрения. Рассчитываем суммы S1=
;
S3=
Для сравнения соответствующих дисперсий строим следующую F-статистику:
S3/S1
~ F(n-m-1;n-m-1)Задаем уровень значимости альфа и определяем
(альфа,
n-m-1,n-m-1)Строим решающее правило: Если
>
,
то нуль гипотезу принимаем на уровне
значимости альфа.
