
- •Рекомендовано до друку
- •Укладачі: с. Мягкота, х. Василів, м. Марків, я. Білий, п. Панасюк, о. Кушнір, о. Вовк, т. Куречко
- •Визначення питомої потужності електричної лампи
- •І. Теоретичні відомості
- •Іі. Опис приладів і методика вимірювання
- •III. Хід роботи
- •Контрольні питання
- •Вивчення тонкої лінзи
- •І. Теоретичні відомості
- •III. Хід роботи
- •IV. Завдання науково-дослідного характеру
- •Контрольні питання
- •Вивчення аберацій лінз
- •І. Теоретичні відомості
- •II. Хід роботи
- •Контрольні питання
- •Визначення числової апертури та роздільної здатності мікроскопа
- •І. Опис приладів і методика вимірювання
- •Іі. Завдання
- •III. Хід роботи
- •Контрольні питання
- •Визначення радіуса кривизни лінзи за допомогою кілець ньютона
- •І. Теоретичні відомості
- •Іі. Опис приладів і методика вимірювання
- •Ііі. Завдання
- •IV. Хід роботи
- •Контрольні питання
- •Визначення довжини світлової хвилі за допомогою біпризми френеля
- •І. Теоретичні відомості
- •Іі. Опис приладів і методика вимірювання
- •Ііі. Завдання
- •IV. Хід роботи
- •Контрольні питання
- •Визначення сталої дифракційної гратки та довжини світлової хвилі
- •І. Теоретичні відомості
- •Ііі. Завдання
- •IV. Хід роботи Завдання 1. Визначення сталої дифракційної гратки
- •Завдання 2. Визначення довжини світлової хвилі
- •Контрольні питання
- •Визначення довжини хвилі випромінювання оптичного квантового генератора
- •І. Теоретичні відомості
- •Іі. Опис приладів і методика вимірювання
- •Ііі. Завдання
- •IV. Хід роботи
- •Контрольні питання
- •Вивчення основних явищ поляризації на приладі норенберга
- •I. Теоретичні відомості
- •Іі. Завдання
- •Ііі. Хід роботи
- •Контрольні питання
- •Вивчення явищ обертової поляризації світла
- •І. Теоретичні відомості
- •Іі .Опис приладів і методика вимірювання
- •Ііі. Завдання
- •IV. Хід роботи
- •Контрольні питання
- •Дослідження режимів газового розряду у ртутно-кварцовій лампі
- •І. Теоретичні відомості
- •Іі. Опис приладів і методика вимірювання
- •Ііі. Завдання
- •IV. Хід роботи
- •Контрольні питання
- •Визначення концентрації розчинів за допомогою фотоелектричного колориметра-нефелометра фек-56
- •І. Теоретичні відомості
- •Іі. Опис приладів і методика вимірювання
- •III. Завдання
- •IV. Хід роботи
- •Контрольні питання
- •Вивчення характеристик фотоелементів
- •І. Теоретичні відомості
- •Іі. Опис приладів і методика вимірювання
- •III. Завдання
- •IV. Хід роботи
- •Контрольні питання
- •Вивчення магнітного обертання площини поляризації
- •І. Теоретичні відомості
- •Іі. Опис приладів і методика вимірювання
- •III. Завдання
- •IV. Хід роботи
- •Контрольні питання
- •Визначення вольт-амперних і світлових характеристик фотоопору
- •І. Теоретичні відомості
- •Іі. Опис приладів і методика вимірювання
- •III. Завдання
- •IV. Хід роботи
- •Контрольні питання
- •Визначення концентрації розчину цукру за допомогою рефрактометра
- •І. Теоретичні відомості
- •Іі .Опис приладів і методика вимірювання
- •Ііі. Завдання
- •IV. Хід роботи
- •Контрольні питання
- •Визначення сталої стефана-больцмана
- •І. Теоретичні відомості
- •Іі. Опис приладів і методика вимірювання
- •Ііі. Завдання
- •IV. Хід роботи
- •Контрольні питання
- •Визначення коефіцієнта поглинання твердих тіл
- •І. Теоретичні відомості
- •Іі. Опис приладів і методика вимірювання
- •Ііі. Завдання
- •IV. Хід роботи
- •Контрольні питання
- •Градуювання спектроскопа та визначення довжин хвиль спектральних ліній досліджуваної речовини
- •І. Теоретичні відомості
- •Іі. Опис приладів і методика вимірювання
- •Ііі. Завдання
- •IV. Хід роботи
- •Контрольні питання
- •Визначення показника заломлення прозорих твердих тіл за допомогою мікроскопа
- •І. Теоретичні відомості
- •Іі. Опис приладів і методика вимірювання
- •Ііі. Завдання
- •IV. Хід роботи
- •Вивчення водневих спектрів та визначення сталої рідберга
- •І. Теоретичні відомості
- •Спектр водню і будова атома водню. Енергетичні рівні в атомі водню.
- •Іі. Опис приладів і методика вимірювання
- •Ііі. Завдання
- •IV. Хід роботи
- •Контрольні питання
- •Визначення сталої планка за спектром водню
- •І. Теоретичні відомості
- •Іі. Опис приладів і методика вимірювання
- •Ііі. Завдання
- •IV. Хід роботи
- •Контрольні питання
- •Вивчення взаємодії радіоактивного -випромінювання з речовиною
- •І. Теоретичні відомості
- •Іі. Опис приладів і методика вимірювання
- •Ііі. Завдання
- •IV. Хід роботи
- •Контрольні питання
- •Вивчення взаємодії радіоактивного -випромінювання з речовиною та вивчення його кількісних характеристик
- •І. Теоретичні відомості
- •Іі. Опис приладів і методика вимірювання
- •Ііі. Завдання
- •IV. Хід роботи
- •Контрольні запитання
- •Бібліографічний список
- •Додаток
Іі. Опис приладів і методика вимірювання
Установка для вивчення режиму газового розряду у ртутно-кварцовій лампі складається з ртутно-кварцового настільного опромінювача ОКН-11, що призначений для проведення загального і місцевого опромінення в фізіотерапевтичних кабінетах, амперметра і вольтметра. Схема установки показана на рис.2. Конденсатор С підключений паралельно до ртутно-кварцової лампи Л через пускову кнопку К. Розряд конденсатора полегшує запалювання лампи. Під час газового розряду при напругах, за яких можлива внутрішня іонізація газу, мала зміна напруги може викликали велику зміну сили струму (рис.1, ділянка сd). Такі великі зміни струму можуть призвести до виходу лампи з ладу. Тому до лампи послідовно під’єднують котушку з індуктивністю L. За законом Фарадея електрорушійна сила самоіндукції у котушці протидіє різким змінам сили струму в колі і, у підсумку, підтримує сумарний струм незмінним.
При прикладанні напруги до електродів ртутно-кварцової трубки через наявність у ній поодиноких іонів та електронів виникає тліючий розряд. Унаслідок бомбардування іонами та електронами електродів вони нагріваються, і з їх поверхні починають вилітати електрони ‑ виникає явище електронної емісії. Лампа нагрівається, і ртуть, що в ній міститься, переходить з рідкого стану у газоподібний. Тиск ртутних парів зростає до необхідної межі і через це виникає дуговий розряд. Це робочий режим лампи, за якого її випромінювання має лінійчастий спектр в ультрафіолетовій області (максимум довжини хвилі = 365 нм), а також в синьо-фіолетовій частині видимого спектра. Ультрафіолетовим називають електромагнітне випромінювання, яке займає спектральну область на шкалі електромагнітних хвиль від = 10 нм (довгохвильова межа рентгенівських хвиль) = 400 нм (довжина хвилі фіолетового світла).
Застосування ультрафіолетового випромінювання пов’язане зі специфічним біологічним впливом на швидкість фотохімічних реакцій. Зокрема, область = 315‑400 нм відіграє важливу роль у створенні пігменту, який надає коричневого забарвлення шкірі.
У медицині використовують ртутну лампу низького тиску переважно бактерицидної дії, яка має лінійчастий спектр випромінювання в ультрафіолетовій області з максимумом = 253,7 нм. Світло, створене такими лампами, використовують для дезінфекції операційних, інфекційних відділень лікарень, а також у місцях великого скупчення людей і тварин.
Ііі. Завдання
1. Вивчити схему вмикання ртутно-кварцової лампи.
2. Дослідити режими газового розряду у ртутно-кварцовій лампі.
IV. Хід роботи
Зібрати установку за схемою на рис.2. Рефлектор лампи спрямувати в протилежний бік від себе і до підлоги, щоб уникнути опромінення.
Увімкнути установку в мережу зі змінною напругою 220 В. Якщо лампа не засвічується, декілька разів натиснути на кнопку пуску К.
Протягом перших двох хвилин роботи лампи реєструвати покази вольтметра та амперметра кожні 0,5 хв, протягом наступних 30 хв – кожні 2 хв.
Результати вимірювань записати у звітну табл. 1
Побудувати вольт-амперну характеристику лампи та графіки залежності від часу сили струму I = f(t) і напруги U = f(t).
Із графіків I = f(t) та U = f(t) визначити час tн встановлення нормального режиму газового розряду у ртутно-кварцовій лампі (режиму, за якого U(t) та I(t) виходять на насичення).