
- •Билеты устного экзамена по геометрии.
- •8 Класс. 2013-2014 уч. Г.
- •Задача по теме «Подобие».
- •Определение и свойства равнобедренного треугольника. Доказательство теоремы о свойстве медианы равнобедренного треугольника, проведенной к основанию.
- •Определение вектора, его длины. Равные и противоположные векторы. Сложение и вычитание векторов. Умножение вектора на число.
- •Разность векторов и обозначается так: - .
- •Задача по теме «Подобие треугольников».
- •Определение равных треугольников. Признаки равенства треугольников (доказательство всех признаков).
- •1. Наложим ∆авс на ∆а1в1с1 так, чтобы точка а совместилась с точкой а1, а стороны ав и ас наложатся соответственно на лучи а1в1 и а1с1.
- •2. Возможны три случая: 1) луч вв1 проходит внутри угла авс; 2) луч вв1 совпадает с одной из сторон угла авс; 3) луч вв1 проходит вне угла авс.
- •Деление отрезка на п равных частей. Доказательство теоремы Фалеса.
- •1. Дополнительное построение: Через точку в2 проведем прямую fe II oa, такую, что
- •2. Полученные четырехугольники fa1a2b2 и еa3a2b2 являются параллелограммами по определению (противоположные стороны попарно параллельны). По свойству параллелограмма:
- •3. Рассмотрим ∆ fb1b2 и ∆в2b3е.
- •2. Разобьем отрезок oa2 на m равных частей длины х. При этом точка a1 будет одной из точек деления.
- •3. Проведем через точки деления прямые, параллельные прямой a1b1. Их получится столько, сколько точек деления на отрезке oa1.
- •5. Тогда
- •Задача по теме «Метод координат».
- •Вывод формулы для вычисления суммы внутренних углов выпуклого многоугольника.
- •Задача «Решение прямоугольного треугольника».
- •Параллельные прямые (определение). Признаки параллельности двух прямых и доказательство этих признаков.
- •Нахождение гипотенузы, катета и острого угла прямоугольного треугольника по данным второму катету и острому углу.
- •Задача «Углы в окружности».
- •Определение вписанного угла. Доказательство теоремы об измерении вписанного угла.
- •1). Одна из сторон вписанного угла проходит через центр окружности.
- •2). Центр окружности лежит внутри вписанного угла.
- •3). Центр окружности лежит вне вписанного угла. Вне угла еас проведем луч ат через центр окружности. Согласно аксиоме измерения углов
- •Вывод формул площади треугольника .
- •1) Пусть авс – остроугольный, тогда bn ac лежит внутри треугольника.
- •2) Пусть авс – тупоугольный с тупым углом с и bn ac лежит внутри треугольника.
- •Задача по теме «Трапеция».
- •Определение внешнего угла треугольника. Доказать теорему о внешнем угле треугольника. Сумма внешних углов п- угольника.
- •Нахождение значений синуса, косинуса, тангенса и котангенса углов в 300, 450, 600.
- •Задача по теме «Пропорциональные отрезки в круге».
- •Геометрическое место точек. Теорема о геометрическом месте точек, равноудаленных от двух данных точек, в геометрической и аналитической формах.
- •1) Окружность – это геометрическое место точек, равноудаленных от данной точки.
- •2) Биссектриса угла – это геометрическое место точек, равноудаленных от сторон угла.
- •3) Серединный перпендикуляр к отрезку – это геометрическое место точек, равноудаленных от концов отрезка.
- •Площадь прямоугольника, прямоугольного треугольника и площадь квадрата.
- •1) Рассмотрим прямоугольник со сторонами a и b и площадью s.
- •Задача по теме «Элементы треугольника»
- •1. Определение треугольника. Доказать теорему о сумме углов треугольника. Замечательные точки треугольника: центр тяжести, ортоцентр, центры вписанной, описанной и вневписанной окружностей.
- •2.Определение тригонометрических функций острого угла прямоугольного треугольника, основные тригонометрические тождества с выводом.
- •3). Доказательство:
- •3. Задача по теме «Параллелограмм».
- •1. Определение прямоугольного треугольника. Признаки равенства прямоугольного треугольника (доказательство всех признаков).
- •2.Определение окружности. Формулы для вычисления длины окружности(без вывода) и длины дуги окружности.
- •3. Задача по теме « Задача на построение».
- •Определение параллелограмма. Свойства параллелограмма с доказательством (не менее четырех свойств).
- •2. Построение биссектрисы угла. Доказать свойство биссектрисы треугольника. Теорема об отношении отрезков биссектрисы треугольника, но которые она делится точкой пересечения биссектрис.
- •3. Задача по теме «Прямоугольник, квадрат».
- •Доказать признаки параллелограмма. Построение параллелограмма по двум сторонам и диагонали.
- •Определение вневписанной окружности. Теорема о центре вневписанной окружности.
- •Задача по теме «Векторы».
- •Определение прямоугольника. Доказать свойства и признаки прямоугольника.
- •Выражение расстояния между двумя точками через координаты этих точек (три случая).
- •Задача на тему «Окружность».
- •Определение ромба. Доказать свойства и признаки ромба. Вывод формулы
- •Выражение радиуса окружности, вписанной в прямоугольный треугольник через его стороны (вывод формулы).
- •Задача по теме «Биссектриса внутреннего угла треугольника».
- •1. Строим любой неразвернутый угол с вершиной о.
- •4. Проводим прямую ас.
- •5. Через точку в проводим параллельную ей прямую, которая пересекает вторую сторону угла в точке d.
- •Определение вписанного четырехугольника. Доказательство свойства углов вписанного четырехугольника.
- •1) Точка c находится вне окружности,
- •Задача по теме «Теорема синусов».
- •Определение средней линии треугольника и трапеции. Доказательство теорем о средней линии треугольника и трапеции.
- •Рассмотрим mbn и npc.
- •Построение окружности, вписанной в треугольник и описанной около него.
- •3.Задача по теме «Векторы».
- •1.Определение подобных треугольников. Сформулировать лемму о подобии треугольников. Сформулировать и доказать признаки подобия треугольников.
- •Уравнение окружности (вывод). Взаимное расположение прямой и окружности.
- •Задача по теме «Решение треугольника».
- •Теорема Пифагора (прямая и обратная). Пифагоровы тройки чисел, египетский треугольник.
- •1). Пусть т – прямоугольный треугольник с катетами a и b и гипотенузой с.
- •4). Докажем, что четырехугольник defg является квадратом.
- •5) По принципу равносоставленности
- •4). Докажем равенство сторон ав и а1в1.
- •5). Докажем равенство треугольников авс и а1в1с1.
- •6). Таким образом, треугольник авс – прямоугольный с прямым углом с.
- •Задача по теме «Метод координат».
- •Теорема косинусов. Следствие из теоремы.
Задача по теме «Подобие треугольников».
Билет № 2
Определение равных треугольников. Признаки равенства треугольников (доказательство всех признаков).
О
пределение.
Треугольники называются равными,
если их можно совместить наложением.
В
таком случае у них попарно равны
все соответственные элементы:
АВ = А1В1; АС = А1С1; ВС = В1С1; А = А1; В = В1; С = С1.
Обозначение равенства треугольников: ∆ АВС = ∆ А1В1С1.
При этом имеет значение порядок, в котором записываются вершины треугольника.
Равенство: ∆ АВС = ∆ А1В1С1 означает, что А = А1; В = В1; С = С1.
Соответственно равенство: ∆ АВС = ∆ MNQ означает, что в этих треугольниках А = M; В = N; С = Q.
Существование треугольника, равного данному.
П
усть
есть АВС
и луч а. Переместим АВС
так, чтобы его вершина А совместилась
с началом луча а, вершина В попала
на луч а, а вершина С оказалась в
заданной полуплоскости относительно
луча а. Вершины полученного треугольника
обозначим А1,
В1,
C1.
Треугольник А1В1С1
равен треугольнику АВС.
Аксиома о существовании треугольника, равного данному. Каков бы ни был треугольник, существует равный ему треугольник в заданном расположении относительно данной полупрямой.
Признаки равенства треугольников. Теорема 1 (первый признак равенства треугольников – СУС). Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Дано: ∆АВС; ∆А1В1С1; АВ = А1В1; A = A1; АС = А1С1.
Доказать: ∆АВС = ∆А1В1С1.
Доказательство:
1. Наложим ∆авс на ∆а1в1с1 так, чтобы точка а совместилась с точкой а1, а стороны ав и ас наложатся соответственно на лучи а1в1 и а1с1.
2. Поскольку АВ = А1В1, точки В и В1 совпадут, а сторона АВ совместится со стороной А1В1.
3. Поскольку АС = А1С1, точки С и С1 совпадут, а сторона АС совместится со стороной А1С1.
4. Согласно аксиоме существования прямых стороны ВС и В1С1 также совпадут. ∆АВС = ∆А1В1С1.
Теорема 2 (второй признак равенства треугольников – УСУ). Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Дано: ∆АВС; ∆А1В1С1; A = A1; АС = А1С1; С = С1.
Доказать: ∆АВС = ∆А1В1С1.
Доказательство:
1. Наложим ∆АВС на ∆А1В1С1 так, чтобы точка А совместилась с точкой А1, сторона АС – с равной ей стороной А1С1, а вершины В и В1 оказались по одну сторону от прямой А1С1.
2. Поскольку A = A1 и С = С1, то сторона АВ наложится на луч А1В1, а сторона СВ наложится на луч С1В1. Вершина В – общая точка сторон АВ и СВ – окажется лежащей на лучах А1В1 и С1В1, а следовательно, совместится с общей точкой лучей А1В1 и С1В1, т. е. с точкой В1. Значит, совместятся стороны АВ и А1В1, а также СВ и С1В1. Значит, ∆АВС = ∆А1В1С1.
Теорема 3 (третий признак равенства треугольников – ССС). Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Д
ано:
∆АВС; ∆А1В1С1;
АВ = А1В1;
ВС
= В1С1;
АС = А1С1.
Доказать: ∆АВС = ∆А1В1С1.
Доказательство: Дополнительное построение. Приложим ∆АВС к ∆А1В1С1 так, чтобы вершина А совместилась с вершиной А1 и вершина С совместилась с вершиной С1, а вершина В и вершина В1 оказались по разные стороны от отрезка АС.