Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экзамен гем 8 класс.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.32 Mб
Скачать
  1. Задача по теме «Подобие треугольников».

Билет № 2

  1. Определение равных треугольников. Признаки равенства треугольников (доказательство всех признаков).

О пределение. Треугольники называются равными, если их можно совместить наложением. В таком случае у них попарно равны все соответственные элементы:

АВ = А1В1; АС = А1С1; ВС = В1С1; А = А1; В = В1; С = С1.

Обозначение равенства треугольников: ∆ АВС = ∆ А1В1С1.

При этом имеет значение порядок, в котором записываются вершины треугольника.

Равенство: ∆ АВС = ∆ А1В1С1 означает, что А = А1; В = В1; С = С1.

Соответственно равенство: ∆ АВС = ∆ MNQ означает, что в этих треугольниках А = M; В = N; С = Q.

Существование треугольника, равного данному.

П усть есть АВС и луч а. Переместим АВС так, чтобы его вершина А совместилась с началом луча а, вершина В попала на луч а, а вершина С оказалась в заданной полуплоскости относительно луча а. Вершины полученного треугольника обозначим А1, В1, C1. Треугольник А1В1С1 равен треугольнику АВС.

Аксиома о существовании треугольника, равного данному. Каков бы ни был треугольник, существует равный ему треугольник в заданном расположении относительно данной полупрямой.

Признаки равенства треугольников. Теорема 1 (первый признак равенства треугольников – СУС). Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Дано: ∆АВС; ∆А1В1С1; АВ = А1В1; A = A1; АС = А1С1.

Доказать: ∆АВС = ∆А1В1С1.

Доказательство:

1. Наложим ∆авс на ∆а1в1с1 так, чтобы точка а совместилась с точкой а1, а стороны ав и ас наложатся соответственно на лучи а1в1 и а1с1.

2. Поскольку АВ = А1В1, точки В и В1 совпадут, а сторона АВ совместится со стороной А1В1.

3. Поскольку АС = А1С1, точки С и С1 совпадут, а сторона АС совместится со стороной А1С1.

4. Согласно аксиоме существования прямых стороны ВС и В1С1 также совпадут. ∆АВС = ∆А1В1С1.

Теорема 2 (второй признак равенства треугольников – УСУ). Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Дано: ∆АВС; ∆А1В1С1; A = A1; АС = А1С1; С = С1.

Доказать: ∆АВС = ∆А1В1С1.

Доказательство:

1. Наложим ∆АВС на ∆А1В1С1 так, чтобы точка А совместилась с точкой А1, сторона АС – с равной ей стороной А1С1, а вершины В и В1 оказались по одну сторону от прямой А1С1.

2. Поскольку A = A1 и С = С1, то сторона АВ наложится на луч А1В1, а сторона СВ наложится на луч С1В1. Вершина В – общая точка сторон АВ и СВ – окажется лежащей на лучах А1В1 и С1В1, а следовательно, совместится с общей точкой лучей А1В1 и С1В1, т. е. с точкой В1. Значит, совместятся стороны АВ и А1В1, а также СВ и С1В1. Значит, ∆АВС = ∆А1В1С1.

Теорема 3 (третий признак равенства треугольников – ССС). Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Д ано: ∆АВС; ∆А1В1С1; АВ = А1В1; ВС = В1С1; АС = А1С1. Доказать: ∆АВС = ∆А1В1С1.

Доказательство: Дополнительное построение. Приложим ∆АВС к ∆А1В1С1 так, чтобы вершина А совместилась с вершиной А1 и вершина С совместилась с вершиной С1, а вершина В и вершина В1 оказались по разные стороны от отрезка АС.