
- •Билеты устного экзамена по геометрии.
- •8 Класс. 2013-2014 уч. Г.
- •Задача по теме «Подобие».
- •Определение и свойства равнобедренного треугольника. Доказательство теоремы о свойстве медианы равнобедренного треугольника, проведенной к основанию.
- •Определение вектора, его длины. Равные и противоположные векторы. Сложение и вычитание векторов. Умножение вектора на число.
- •Разность векторов и обозначается так: - .
- •Задача по теме «Подобие треугольников».
- •Определение равных треугольников. Признаки равенства треугольников (доказательство всех признаков).
- •1. Наложим ∆авс на ∆а1в1с1 так, чтобы точка а совместилась с точкой а1, а стороны ав и ас наложатся соответственно на лучи а1в1 и а1с1.
- •2. Возможны три случая: 1) луч вв1 проходит внутри угла авс; 2) луч вв1 совпадает с одной из сторон угла авс; 3) луч вв1 проходит вне угла авс.
- •Деление отрезка на п равных частей. Доказательство теоремы Фалеса.
- •1. Дополнительное построение: Через точку в2 проведем прямую fe II oa, такую, что
- •2. Полученные четырехугольники fa1a2b2 и еa3a2b2 являются параллелограммами по определению (противоположные стороны попарно параллельны). По свойству параллелограмма:
- •3. Рассмотрим ∆ fb1b2 и ∆в2b3е.
- •2. Разобьем отрезок oa2 на m равных частей длины х. При этом точка a1 будет одной из точек деления.
- •3. Проведем через точки деления прямые, параллельные прямой a1b1. Их получится столько, сколько точек деления на отрезке oa1.
- •5. Тогда
- •Задача по теме «Метод координат».
- •Вывод формулы для вычисления суммы внутренних углов выпуклого многоугольника.
- •Задача «Решение прямоугольного треугольника».
- •Параллельные прямые (определение). Признаки параллельности двух прямых и доказательство этих признаков.
- •Нахождение гипотенузы, катета и острого угла прямоугольного треугольника по данным второму катету и острому углу.
- •Задача «Углы в окружности».
- •Определение вписанного угла. Доказательство теоремы об измерении вписанного угла.
- •1). Одна из сторон вписанного угла проходит через центр окружности.
- •2). Центр окружности лежит внутри вписанного угла.
- •3). Центр окружности лежит вне вписанного угла. Вне угла еас проведем луч ат через центр окружности. Согласно аксиоме измерения углов
- •Вывод формул площади треугольника .
- •1) Пусть авс – остроугольный, тогда bn ac лежит внутри треугольника.
- •2) Пусть авс – тупоугольный с тупым углом с и bn ac лежит внутри треугольника.
- •Задача по теме «Трапеция».
- •Определение внешнего угла треугольника. Доказать теорему о внешнем угле треугольника. Сумма внешних углов п- угольника.
- •Нахождение значений синуса, косинуса, тангенса и котангенса углов в 300, 450, 600.
- •Задача по теме «Пропорциональные отрезки в круге».
- •Геометрическое место точек. Теорема о геометрическом месте точек, равноудаленных от двух данных точек, в геометрической и аналитической формах.
- •1) Окружность – это геометрическое место точек, равноудаленных от данной точки.
- •2) Биссектриса угла – это геометрическое место точек, равноудаленных от сторон угла.
- •3) Серединный перпендикуляр к отрезку – это геометрическое место точек, равноудаленных от концов отрезка.
- •Площадь прямоугольника, прямоугольного треугольника и площадь квадрата.
- •1) Рассмотрим прямоугольник со сторонами a и b и площадью s.
- •Задача по теме «Элементы треугольника»
- •1. Определение треугольника. Доказать теорему о сумме углов треугольника. Замечательные точки треугольника: центр тяжести, ортоцентр, центры вписанной, описанной и вневписанной окружностей.
- •2.Определение тригонометрических функций острого угла прямоугольного треугольника, основные тригонометрические тождества с выводом.
- •3). Доказательство:
- •3. Задача по теме «Параллелограмм».
- •1. Определение прямоугольного треугольника. Признаки равенства прямоугольного треугольника (доказательство всех признаков).
- •2.Определение окружности. Формулы для вычисления длины окружности(без вывода) и длины дуги окружности.
- •3. Задача по теме « Задача на построение».
- •Определение параллелограмма. Свойства параллелограмма с доказательством (не менее четырех свойств).
- •2. Построение биссектрисы угла. Доказать свойство биссектрисы треугольника. Теорема об отношении отрезков биссектрисы треугольника, но которые она делится точкой пересечения биссектрис.
- •3. Задача по теме «Прямоугольник, квадрат».
- •Доказать признаки параллелограмма. Построение параллелограмма по двум сторонам и диагонали.
- •Определение вневписанной окружности. Теорема о центре вневписанной окружности.
- •Задача по теме «Векторы».
- •Определение прямоугольника. Доказать свойства и признаки прямоугольника.
- •Выражение расстояния между двумя точками через координаты этих точек (три случая).
- •Задача на тему «Окружность».
- •Определение ромба. Доказать свойства и признаки ромба. Вывод формулы
- •Выражение радиуса окружности, вписанной в прямоугольный треугольник через его стороны (вывод формулы).
- •Задача по теме «Биссектриса внутреннего угла треугольника».
- •1. Строим любой неразвернутый угол с вершиной о.
- •4. Проводим прямую ас.
- •5. Через точку в проводим параллельную ей прямую, которая пересекает вторую сторону угла в точке d.
- •Определение вписанного четырехугольника. Доказательство свойства углов вписанного четырехугольника.
- •1) Точка c находится вне окружности,
- •Задача по теме «Теорема синусов».
- •Определение средней линии треугольника и трапеции. Доказательство теорем о средней линии треугольника и трапеции.
- •Рассмотрим mbn и npc.
- •Построение окружности, вписанной в треугольник и описанной около него.
- •3.Задача по теме «Векторы».
- •1.Определение подобных треугольников. Сформулировать лемму о подобии треугольников. Сформулировать и доказать признаки подобия треугольников.
- •Уравнение окружности (вывод). Взаимное расположение прямой и окружности.
- •Задача по теме «Решение треугольника».
- •Теорема Пифагора (прямая и обратная). Пифагоровы тройки чисел, египетский треугольник.
- •1). Пусть т – прямоугольный треугольник с катетами a и b и гипотенузой с.
- •4). Докажем, что четырехугольник defg является квадратом.
- •5) По принципу равносоставленности
- •4). Докажем равенство сторон ав и а1в1.
- •5). Докажем равенство треугольников авс и а1в1с1.
- •6). Таким образом, треугольник авс – прямоугольный с прямым углом с.
- •Задача по теме «Метод координат».
- •Теорема косинусов. Следствие из теоремы.
2.Определение окружности. Формулы для вычисления длины окружности(без вывода) и длины дуги окружности.
О
пределение
1.
Окружностью
называется геометрическая фигура,
состоящая из множества точек,
равноудаленных от данной точки. Эта
точка называется центром
окружности. О
– центр окружности.
Определение 2. Радиусом окружности называется отрезок, соединяющий любую точку окружности с ее центром, а также длина этого отрезка. ОС, ОА, ОВ – радиусы окружности.
Определение 3. Отрезок, соединяющий две точки окружности, называется хордой. PQ, АВ – хорды.
Определение 4. Наибольшая хорда окружности, проходящая через центр окружности, называется диаметром. Центр окружности является серединой диаметра. Диаметр равен двум радиусам. АВ – диаметр.
Определение 5. Дугой окружности называется часть окружности, ограниченная двумя точками окружности. АС, АP, PQ, ВQ, BC – дуги окружности.
Формула длины окружности. Длина С окружности радиусом R выражается формулой С = 2R.
Отношение длины окружности к ее диаметру есть число постоянное для всех окружностей.
Формула
длины дуги окружности).
Длина дуги окружности определяется
по формуле
Так
как длина окружности С = 2R,
то длина дуги в 1°
а длина дуги в °
3. Задача по теме « Задача на построение».
Билет № 10
Определение параллелограмма. Свойства параллелограмма с доказательством (не менее четырех свойств).
Определение 1. Четырехугольник, противоположные стороны которого попарно параллельны, называется параллелограммом.
У каждого параллелограмма четыре вершины, четыре стороны, четыре угла. Две стороны, имеющие общие концы, называются смежными. У каждого параллелограмма две диагонали – отрезки, соединяющие противоположные вершины параллелограмма. Сумма углов параллелограмма равна 360°.
Свойства
параллелограмма.
Свойство 1. У параллелограмма противоположные стороны равны и противоположные углы попарно равны.
Доказательство: Проведем диагональ АС. АС – общая; ВАС = АСD (внутренние накрест лежащие при АВ II BC и секущей АС);ВСА = САD (внутренние накрест лежащие при АD II BC и секущей АС); АВС = АDС (по 2 признаку).АВ = CD; BC = AD; В = D.А = ВАС + СAD; С = АСB + АСD; А = С.
Свойство 2. У параллелограмма углы, прилежащие к одной стороне, в сумме дают 180°.
Доказательство:
В + А =180° (внутренние односторонние при ВС II AD и секущей АB).
B + С =180° (внутренние односторонние при AВ II CD и секущей BC).
D + C =180° (внутренние односторонние при ВС II AD и секущей CD).
A + D =180° (внутренние односторонние при AВ II CD и секущей AD).
Свойство 3. Диагонали параллелограмма точкой пересечения делятся пополам.
Д
оказательство:
Проведем диагонали АС и BD,
пересекающиеся в точке О.
АВ = СD (по первому св-ву параллелограмма);
AВO = ODC (внутренние накрест лежащие при АВ II CD и секущей BD);
ВАO = OСD (внутренние накрест лежащие при АB II CD и секущей АС); АВO = ODС (по 2 признаку).ВO = OD; AO = OC.