Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
full_version (1).doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.02 Mб
Скачать

1

1.Персептрон и его роль в становлении распознавания образов.

3. Предложить алгоритм автоматической классификации для задачи построения скелета объекта изображения.

Ф. Розенблатт вводя понятие о модели мозга, задача которой состоит в том, чтобы показать, как в некоторой физической системе, структура и функциональные свойства которой известны, могут возникать психологические явления — описал простейшие эксперименты по различению. Данные эксперименты целиком относятся к методам распознавания образов, но отличаются тем, что алгоритм решения не детерминированный.

Простейший эксперимент, на основе которого можно получить психологически значимую информацию о некоторой системе, сводится к тому, что модели предъявляются два различных стимула и требуется, чтобы она реагировала на них различным образом. Целью такого эксперимента может быть исследование возможности их спонтанного различения системой при отсутствии вмешательства со стороны экспериментатора, или, наоборот, изучение принудительного различения, при котором экспериментатор стремится обучить систему проводить требуемую классификацию.

В опыте с обучением персептрону обычно предъявляется некоторая последовательность образов, в которую входят представители каждого из классов, подлежащих различению. В соответствии с некоторым правилом модификации памяти правильный выбор реакции подкрепляется. Затем персептрону предъявляется контрольный стимул и определяется вероятность получения правильной реакции для стимулов данного класса. В зависимости от того, совпадает или не совпадает выбранный контрольный стимул с одним из образов, которые использовались в обучающей последовательности, получают различные результаты:

  1. Если контрольный стимул не совпадает ни с одним из обучающих стимулов, то эксперимент связан не только с чистым различением, но включает в себя и элементыобобщения.

  2. Если контрольный стимул возбуждает некоторый набор сенсорных элементов, совершенно отличных от тех элементов, которые активизировались при воздействии ранее предъявленных стимулов того же класса, то эксперимент является исследованием чистого обобщения.

Персептроны не обладают способностью к чистому обобщению, но они вполне удовлетворительно функционируют в экспериментах по различению, особенно если контрольный стимул достаточно близко совпадает с одним из образов, относительно которых персептрон уже накопил определенный опыт.

2. Понятие расстояния в распознавании образов.

В классической постановке задачи распознавания универсальное множество разбивается на части-образы. Образ какого-либо объекта задается набором его частных проявлений. В случае с распознаванием текста в универсальное множество войдут все возможные знаки, в образ "Ы" - все возможные начертания этой буквы, а программа распознавания занимается тем, что на основе небольшого набора примеров начертаний каждой буквы (обучающей выборки) определяет, какую из них символизирует введенная закорючка.

Методика отнесения элемента к какому-либо образу называется решающим правилом. Еще одно важное понятие - метрика, способ определения расстояния между элементами универсального множества. Чем меньше это расстояние, тем более похожими являются символы, звуки - то, что мы распознаем. Обычно элементы задаются в виде набора чисел, а метрика - в виде функции. От выбора представления образов и реализации метрики зависит эффективность программы, один алгоритм распознавания с разными метриками будет ошибаться с разной частотой (право на ошибку для программ распознавания так же характерно, как и для людей).

Хорошо показывает принцип работы распознавания образов элементарный алгоритм на основе метода множества эталонов. На входе его имеется обучающая выборка - набор примеров A'ij для каждого образа Ai, метрика d и сам распознаваемый объект x. С помощью метрики вычисляем расстояние от x до каждого элемента обучающей выборки d(x, aij) и находим условное расстояние d(x, Ai) как расстояние от x до ближайшего элемента из Ai. Элемент x относится к образу, который окажется ближе всех.

Практически тут требуется найти минимум расстояния по каждому классу и еще раз взять минимум. Любители трогать руками могут взять в качестве представления элемента пару координат, в качестве метрики - расстояние по теореме Пифагора, и набросать программку, которая будет выполнять описанную операцию над массивом точек двухмерного пространства и отображать это в графике.

Еще один элементарный алгоритм - метод k-ближайших соседей. Как следует из названия, в нем вводится дополнительный входной параметр, целое число k. Тут все еще проще - берется k ближайших к x элементов обучающей выборки и подсчитывается, сколько из них принадлежит к какому образу. К какому образу принадлежит больше, к тому относится и x.

В обоих алгоритмах может возникнуть неопределенная ситуация - когда x будет находиться на одинаковом расстоянии от нескольких образов. В таком случае программа должна либо спросить у пользователя, к какому образу относить элемент, либо тихо бросить жребий. Это зависит от требований к точности с одной стороны, и удобству использования с другой, лучше всего реализовать оба варианта.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]