
Кора больших полушарий головного мозга
Общий план организации коры. Кора больших полушарий является высшим отделом центральной нервной системы, который в процессе филогенетического развития появляется позже всего и формируется в ходе индивидуального (онтогенетического) развития Позже других отделов мозга. Кора представляет собой слой серого вещества толщиной 2—3 мм, содержащий в среднем около 14 млрд. (от 10 до 18 млрд.) нервных клеток, нервные волокна и межуточную ткань (нейроглию). На поперечном ее срезе по расположению нейронов и их связей различают 6 горизонтальных слоев. Благодари многочисленным извилинам и бороздам площадь поверхности коры достигает 0,2 м2. Непосредственно под корой находится белое вещество, состоящее из нервных волокон, которые передают возбуждение в кору и из нее, а также от одних участков коры другим.
Корковые нейроны и их связи. Несмотря на огромное число нейронов в коре, известно очень немного их разновидностей. Основными типами их являются пирамидные и звездчатые нейроны.
В афферентной функции коры и в процессах переключения возбуждения на соседние нейроны основная роль принадлежит звездчатым нейронам. Они составляют у человека более половины всех клеток коры. Эти клетки имеют короткие ветвящиеся аксоны, не выходящие за пределы серого вещества коры, и короткие ветвящиеся дендриты. Звездчатые нейроны участвуют в процессах восприятия раздражений и объединении деятельности различных пирамидных нейронов.
Пирамидные нейроны осуществляют эфферентную функцию коры и внутрикорковые процессы взаимодействия между удаленными друг от друга нейронами. Они делятся на крупные пирамиды, от которых начинаются проекционные, или эфферентные, пути к подкорковым образованиям, и мелкие пирамиды, образующие ассоциативные пути к другим отделам коры. Наиболее крупные пирамидные клетки — гигантские пирамиды Беца — находятся в передней центральной извилине, в так называемой моторной зоне коры. Характерная особенность крупных пирамид — их вертикальная ориентация в толще коры. От тела клетки вертикально вверх к поверхности коры направлен наиболее толстый (верхушечный) дендрит, через который в клетку поступают различные афферентные влияния от других нейронов, а вертикально вниз отходит эфферентный отросток— аксон.
Для коры больших полушарий характерно обилие межнейронных связей. По мере развития мозга человека после его рождения увеличивается число межцентральиых взаимосвязей, особенно интенсивно до 18 лет.
Функциональной единицей коры является вертикальная колонка взаимосвязанных нейронов. Вытянутые по вертикали крупные пирамидные клетки с расположенными над ними и под ними нейронами образуют функциональные объединения нейронов. Все нейроны вертикальной колонки отвечают на одно и то же афферентное раздражение (от одного и того же рецептора) одинаковой реакцией и совместно формируют эфферентные ответы пирамидных нейронов.
Распространение возбуждения в поперечном направлении — от одной вертикальной колонки к другой — ограничено процессами торможения. Возникновение активности в вертикальной колонке приводит к возбуждению спинальных мотонейронов и сокращению связанных с ними мышц. Этот путь используется, в частности, при произвольном управлении движениями конечностей.
Функции коры больших полушарий. Кора больших полушарий выполняет наиболее сложные функции организации приспособительного поведения организма во внешней среде. Это прежде всего функция высшего анализа и синтеза всех афферентных раздражений.
Афферентные сигналы поступают в кору по разным каналам, в разные ядерные зоны анализаторов (первичные поля), а затем синтезируются во вторичных и третичных полях, благодаря деятельности которых создается целостное восприятие внешнего мира. Этот синтез лежит в основе сложных психических процессов восприятия, представления, мышления. Кора больших полушарий представляет собою орган, тесно связанный с возникновением у человека сознания и регуляцией его общественного поведения. Важной стороной деятельности коры больших полушарий является замыкательная функция— образование новых рефлексов и их систем.
Благодаря необычайно большой продолжительности сохранения в коре следов прежних раздражений (памяти) в ней накапливается огромный объем информации. Это имеет большое значение для сохранения индивидуального опыта, который используется по мере необходимости.
ВЫСШАЯ НЕРВНАЯ ДЕЯТЕЛЬНОСТЬ (УСЛОВНЫЕ РЕФЛЕКСЫ)
Роль высшей нервной деятельности в адаптации организма к изменяющимся условиям среды
Высшая нервная деятельность обеспечивает индивидуальное приспособление организма к изменяющимся условиям внешней и. внутренней среды. Она детерминирована совокупным действием многих факторов. К ним относятся, с одной стороны, афферентная импульсация, которая поступает в центральную нервную систему от рецепторов, воспринимающих эндогенные и экзогенные раздражения, т. е. раздражения из внутренней и внешней среды, с другой стороны — следовые явления от прежней деятельности нервной системы, т. е. память. Важная роль в афферентной импульсации принадлежит соисорным коррекциям (обратным связям), передающим через внутренние и внешние анализаторы сигналы о характере и эффек-ипиюсти реакций организма (в спорте, например, о перемещениях шеньев тела, траектории перемещающихся снарядов при метаниях).
На основе анализа и синтеза афферентной импульсации (в том числе и сенсорных коррекций) и следовых процессов формируются новые рефлекторные акты и целостное поведение организма.
Высшая нервная деятельность имеет важнейшее значение в процессе приобретения новых двигательных навыков и адаптации к различным физическим упражнениям.
Рефлекторная теория И. П. Павлова, основанная на конкретных научных исследованиях, вскрыла многие закономерности нервного процесса как процесса отражения и его пластичный характер. Она содержит эксперимен тальные доказательства философских положений о познаваемости материальных процессов, лежащих в основе психической деятель ности, о причинной обусловленности произвольных движений и поступков человека материальными процессами в нервной системе, вызванными раздражениями из внешней или внутренней среды и следами от всей предшествующей деятельности.
Механизмы высшей нервной деятельности у высших животных и человека связаны с деятельностью ряда отделов головного мозга. Основная роль в этих механизмах принадлежит коре больших полушарий (И. П. Павлов). Экспериментально показано, что у высших представителей животного мира после полного оперативного удаления коры высшая нервная деятельность резко ухудшается. Они теряют способность тонко приспосабливаться к внешней среде и самостоятельно существовать в ней.
Отсутствие активных пищедобывательных рефлексов и защитных реакций на дистантные раздражители может привести к гибели от голода или биологических врагов.
У человека кора больших полушарий головного мозга выполняет роль «распорядителя и распределителя» всех жизненных функций (И. П. Павлов). Это обусловлено тем, что в ходе филогенетического развития происходит процесс кортикализации функций. Он выражается во все большем подчинении соматических и вегетативных отправлений организма регуляторным влияниям коры мозга. В случае гибели нервных клеток в значительной части коры головного мозга человек оказывается нежизнеспособным и быстро погибает при заметном нарушении гомеостаза важнейших вегетативных функций.
КРОВЬ
КРОВЬ КАК ВНУТРЕННЯЯ СРЕДА ОРГАНИЗМА
Кровь вместе с лимфой и межтканевой жидкостью составляет внутреннюю среду организма, в которой протекает жизнедеятельность всех клеток и тканей. Она представляет собой своеобразную форму ткани и характеризуется следующими особенностями: 1) является жидкой средой, содержащей форменные элементы; 2) находится в постоянном движении; 3) составные части крови в основном образуются и разрушаются вне ее.
Кровь вместе с кроветворными и кроверазрушающими органами (костным мозгом, селезенкой, печенью и лимфатическими узлами) составляет целостную систему крови (Г. Ф. Ланг). Деятельность этой системы регулируется нейрогуморальным и рефлекторным путем.
Благодаря циркуляции в сосудах кровь выполняет в организме следующие важнейшие функции: 1) транспортную, 2) регуляторную, 3) защитную и 4) дыхательную.
Кровь транспортирует питательные вещества (глюкозу, аминокислоты, жиры и др.) к клеткам, а конечные продукты обмена веществ ( аммиак, мочевину, мочевую кислоту и др.) —от них к органам выделения. Осуществляя перенос гормонов и других физиологических активных веществ, воздействующих на различные органы и ткани, она выполняет регуляторную функцию. С функциями крови тесно связана регуляция постоянства температуры тела. Кровь переносит тепло от органов с интенсивным его образованием к органам с менее интенсивной теплопродукцией и к местам, где она охлаждается (поверхность кожи). Защитную функцию кровь выполняет благодаря способности лейкоцитов к фагоцитозу и наличию в ней иммунных тел, обезвреживающих микроорганизмы и их яды, разрушающих чужеродные белки. Доставляя кислород от легких к тканям, принося к легким углекислый газ, кровь осуществляет дыхательную функцию.