
- •Понятие функции. Способы задания функций. Классификации функций.
- •Область определения функции. Четность и периодичность функций.
- •Обратные функции. Понятия сложной функции, явной и неявной функций.
- •Преобразование графиков функций.
- •Предел числовой последовательности.
- •Предел функции в точке. Предел функции на бесконечности.
- •Основные теоремы о пределах.
- •Бесконечно малые функции и их основные свойства.
- •Основные свойства бесконечно малых функций
- •Бесконечно большие функции и их основные свойства.
- •Связь между бесконечно малыми и бесконечно большими функциями.
- •Раскрытие некоторых типов неопределенностей.
- •13.Односторонние пределы функции.
- •14.Непрерывность функции. Виды разрывов функции.
- •15.Сравнение порядков бесконечно малых функций.
- •16.Эквивалентные бесконечно малые функции.
- •17.Производная функции в точке, ее геометрический смысл.
- •18.Производная алгебраической суммы функций, произведения и частного.
- •19.Общая схема нахождения производных функций.
- •20.Правило дифференцирования сложной функции.
- •23.Производные высших порядков.
- •24.Дифференциал функции и его геометрический смысл.
- •25.Теорема Ферма.
- •26.Теорема Ролля.
- •27.Теорема Лагранжа.
- •28.Теорема Коши.
- •29.Правило Лопиталя.
- •30.Экстремумы функций одной независимой. Необходимые и достаточные условия существования экстремумов.
- •31.Вогнутость и выпуклость функций, точки перегиба функций.
- •32.Необходимые и достаточные условия существования точек перегиба функции.
- •33.Выпуклость и вогнутость графика функции в точке (аналитический признак).
- •34.План исследования и построения графиков функций.
- •35.Первообразная функции. Неопределенный интеграл и его свойства.
Предел числовой последовательности.
Числовой последовательностью называется бесконечное множество чисел
(1)
следующих одно за другим
в определенном порядке и построенных
по определенному закону, с помощью
которого
задается
как функция целочисленного
аргумента,
т.е.
.
Число А называется
пределом последовательности (1), если
для любого
существует
число
,
такое, что при
выполняется
неравенство
. Если
число А есть предел последовательности
(1), то пишут
Числовая последовательность не может иметь более одного предела. Последовательность, имеющая предел, называется сходящейся.
Для сходящихся последовательностей имеют место теоремы:
если
.
Предел функции в точке. Предел функции на бесконечности.
Число
называется пределом
функции
на
бесконечности или
при
,
если для любого
существует
число
такое,
что для всех
из
того, что
,
выполняется неравенство
.
Определение предела функции в точке по Коши.
Число b называется пределом функции у = f(x) при х, стремящемся к а (или в точке а), если для любого положительного числа существует такое положительное число , что при всех х ≠ а, таких, что |x – a | < , выполняется неравенство | f(x) – a | < .
Определение предела функции в точке по Гейне. Число b называется пределом функции у = f(x) при х, стремящемся к а (или в точке а), если для любой последовательности {xn}, стремящейся к а( имеющей пределом число а), причем ни при каком значении n хn ≠ а, последовательность {yn = f(xn)} сходится к b.
Данные определения предполагают, что функция у = f(x) определена в некоторой окрестности точки а, кроме, быть может, самой точки а.
Основные теоремы о пределах.
Теорема 1. (о предельном переходе в равенстве) Если две функции принимают одинаковые значения в окрестности некоторой точки, то их пределы в этой точке совпадают.
.
Теорема 2. (о предельном переходе в неравенстве) Если значения функции f(x) в окрестности некоторой точки не превосходят соответствующих значений функции g(x) , то предел функции f(x) в этой точке не превосходит предела функции g(x).
.
Теорема 3. Предел постоянной равен самой постоянной.
.
Доказательство. f(x)=с, докажем,
что
.
Возьмем произвольное >0. В качестве можно взять любое
положительное число. Тогда
при
.
Теорема 4. Функция не может иметь двух различных пределов в
одной точке.
Доказательство. Предположим противное. Пусть
и
.
По теореме о связи предела и бесконечно малой функции:
f(x)-A=
-
б.м. при
,
f(x)-B=
-
б.м. при
.
Вычитая эти равенства,
получим:
B-A= - .
Переходя к пределам в обеих частях равенства при , имеем:
B-A=0, т.е. B=A. Получаем противоречие, доказывающее теорему.
Теорема 5. Если каждое слагаемое алгебраической суммы функций имеет предел при , то и алгебраическая сумма имеет предел при , причем предел алгебраической суммы равен алгебраической сумме пределов.
.
Доказательство. Пусть
,
,
.
Тогда, по теореме о связи предела и б.м. функции:
где
-
б.м. при
.
Сложим алгебраически эти равенства:
f(x)+g(x)-h(x)-(А+В-С)=
,
где
б.м.
при
.
По теореме о связи предела и б.м. функции:
А+В-С=
.
Теорема 6. Если каждый из сомножителей произведения конечного числа функций имеет предел при , то и произведение имеет предел при , причем предел произведения равен произведению пределов.
.
Следствие. Постоянный множитель можно выносить за знак предела.
.
Теорема 7. Если функции f(x) и g(x) имеют предел при ,
причем
,
то и их частное имеет предел при
,
причем предел частного равен частному
пределов.
,
.