Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
матан 2.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.29 Mб
Скачать
  1. Обратные функции. Понятия сложной функции, явной и неявной функций.

Обра́тная фу́нкция — функция, обращающая зависимость, выражаемую данной функцией. Например, если функция от x даёт y, то обратная ей функция от y даёт x. Обратная функция функции   обычно обозначается  .

Чтобы найти обратную функцию, нужно решить уравнение   относительно  . Если оно имеет более чем один корень, то функции обратной к   не существует. Таким образом, функция   обратима на интервале   тогда и только тогда, когда на этом интервале она инъективна.

Для непрерывной функции   выразить   из уравнения   возможно в том и только том случае, когда функция   монотонна (см. теорема о неявной функции). Тем не менее, непрерывную функцию всегда можно обратить на промежутках её монотонности. Например,   является обратной функцией к  на  , хотя на промежутке   обратная функция другая: 

Сложная функция – функция от функции. Если z – функция от у, т.е. z(y), а у, в свою очередь, – функция от х, т.е. у(х), то функция f(x) = z(y(x)) называется сложной функцией  от х.

В такой функции х – независимая, а у – промежуточная переменная. При этом сложная функция определена для тех значений независимой переменной, для которых значения промежуточной функции у входят в область определения функции z(y).

Производная дифференцируемой сложной функции равна произведению производной данной функции по промежуточному аргументу на производную промежуточной функции по независимому аргументу:

  1. Преобразование графиков функций.

Общий вид функции

Преобразования

y = f(x - b)

Параллельный перенос графика вдоль оси абсцисс на | b | единиц

  • Вправо на b единиц;

y = f(x + b)

  • влево, на b единиц;

y = f(x) + m

Параллельный перенос графика вдоль оси ординат на | m | единиц

  • вверх, если m > 0,

  • вниз, если m < 0.

Отражение графика

y = f( - x)

Симметричное отражение графика относительно оси ординат.

y = - f(x)

Симметричное отражение графика относительно оси абсцисс.

Сжатие и растяжение графика

y = f(kx)

  • При k > 1 — сжатие графика к оси ординат в k раз,

  • при 0 < k < 1 — растяжение графика от оси ординат в k раз.

y = kf(x)

  • При k > 1 — растяжение графика от оси абсцисс в k раз,

  • при 0 < k < 1 — cжатие графика к оси абсцисс в k раз.

Преобразования графика с модулем

y = | f(x) |

  • При f(x) > 0 — график остаётся без изменений,

  • при f(x) < 0 — график симметрично отражается относительно оси абсцисс.

y = f( | x | )

  • При x 0 — график остаётся без изменений,

  • при x < 0 — график симметрично отражается относительно оси ординат.