
- •Экзаменационные вопросы с ответами по дисциплине огсэ.02 «Физиология с основами биохимии»
- •Семестр № 4 2013 – 2014 учебного года
- •1. Предмет и методы физиологии и биохимии. Значение физиологии и биохимии в подготовке специалистов в области физической культуры и спорта (хоккея).
- •3. Строение и функции клеточной мембраны. Ионные каналы, их виды, функции.
- •5. Потенциал действия, его фазы. Изменение возбудимости в различные фазы процесса возбуждения.
- •6. Строение и функции периферических нервов. Виды нервных волокон. Механизм и особенности проведения возбуждения по волокнам разных типов.
- •7. Строение и функции нервно-мышечного синапса. Синаптические потенциалы.
- •8. Сократительная функция скелетных мышц. Элементарные структурные единицы мышечной ткани, обеспечивающие сократительный акт.
- •9. Физиологические механизмы мышечного сокращения. Современные концепции и теории мышечного сокращения.
- •10. Энергетика мышечного сокращения. Источники энергии для сокращения и расслабления мышц. Пути ресинтеза атф при мышечной деятельности.
- •12. Биохимические и физиологические процессы при утомлении.
- •13. Изменения в скелетных мышцах под влиянием физической тренировки. Возрастные особенности мышечной ткани.
- •14. Функциональные изменения организма при физических нагрузках, взаимосвязь физических нагрузок и функциональных возможностей организма.
- •15. Физиологические характеристика состояния организма при спортивной деятельности.
- •16. Физическая работоспособность спортсменов. Методы оценки физической работоспособности
- •17. Тренировка как физиологический процесс.
- •18. Понятие о тренированности. Физиологические основы состояния тренированности
- •19. Физиологические особенности спортивного отбора и спортивной ориентации.
- •20. Физиологическая характеристика и физиологические основы тренировки силы, быстроты, выносливости, ловкости, гибкости.
- •21. Биохимические основы развития двигательных качеств.
- •22. Функции центральной нервной системы. Нейрон – структурно-функциональная единица нервной системы. Виды и функции нейронов.
- •23. Нейро-нейрональные синапсы, их виды. Механизм синаптической передачи
- •24. Торможение в центральной нервной системе, его виды и значение.
- •25. Нервные центры и их свойства (одностороннее проведение, задержка, суммация, окклюзия, трансформация ритма возбуждения, последействие).
- •26. Рефлекс, рефлекторная дуга. Время рефлекса.
- •27. Физиология спинного мозга. Роль спинного мозга в координации сложных форм двигательной деятельности.
- •28. Продолговатый мозг и мост (задний мозг). Роль продолговатого мозга в регуляции вегетативных функций. Проводниковая функция двигательных и вегетативных функций на уровне продолговатого мозга.
- •30. Ретикулярная формация. Активирующая и тормозящая функции ретикулярной формации. Черепные нервы.
- •31. Промежуточный мозг. Таламус (зрительный бугор). Специфические и неспецифические ядра таламуса. Гипоталамус. Роль гипоталамуса в регуляции вегетативных функций.
- •32. Физиология мозжечка, его влияние на ядра ствола. Значение мозжечка в программировании и корректировке движений.
- •33. Физиология базальных ядер, их значение в регуляции параметров движения, мышечного тонуса.
- •34. Функции коры больших полушарий (сенсорная, моторная, условно-рефлекторная, психическая).
- •35. Ассоциативные и двигательные области коры больших полушарий.
- •36. Асимметрия больших полушарий головного мозга. Электроэнцефалография.
- •37. Физиология автономной нервной системы.
- •38. Симпатический отдел вегетативной нервной системы.
- •39. Парасимпатический отдел вегетативной нервной системы.
- •40. Внутриорганный отдел автономной нервной системы. Медиаторы автономной нервной системы
- •41. Возрастные особенности вегетативной нервной системы. Особенности вегетативной нервной системы у спортсменов
- •42. Понятие о двигательных программах как элементах построения двигательного поведения. Общие принципы регуляции движений. Общий план строения двигательных систем
- •43. Роль спинного мозга и ствола в регуляции двигательной активности
- •45. Понятие высшей нервной деятельности. Формы ее проявления. Учение об условных рефлексах. Механизм и условия образования условных рефлексов.
- •46. Первая и вторая сигнальные системы мозга. Динамический стереотип. Типы высшей нервной деятельности.
- •47. Внешнее и внутреннее торможение условных рефлексов.
- •48. Основные принципы формирования двигательных навыков. Условно-рефлекторные закономерности как физиологическая основа формирования произвольных движений.
- •50. Роль желез внутренней секреции в регуляции физиологических функций. Гормоны, их характеристика, роль в жизнедеятельности организма.
- •51. Система “гипоталамус-гипофиз-надпочечники”. Нейромедиаторы гипоталамуса – статины и либерины. Физиологическая роль гормонов гипофиза. Тропные гормоны.
- •52. Надпочечники. Гормоны коркового и мозгового слоев.
- •53. Щитовидная и паращитовидная железы. Роль гормонов щитовидной железы в регуляции белкового и минерального обмена. Последствия гипо- и гипертиреозов.
- •54. Паращитовидные железы. Паратгормон и его роль в регуляции кальциевого обмена. Шишковидная железа (Эпифиз). Физиологическая роль гормонов шишковидной железы.
- •56. Понятие о стрессе и адаптации. Роль эндокринной системы в адаптации организма человека к стрессу.
- •57. Понятие об адаптации. Реакция организма на стресс, её особенности у спортсменов. Динамика функций организма при адаптации. Стадии адаптации
- •58. Рецепторная и анализаторная функции. Анализаторные системы. Рецепторы, их виды, моно- и полимодальные, контактные и дистантные, первично- и вторичночувствующие. Свойства рецепторов.
- •59. Физиология кожной рецепции. Виды кожной чувствительности. Современные теории кожной чувствительности. Двигательный анализатор (проприоцепция).
- •60. Физиология обоняния и вкуса. Рецепторы обоняния; современные теории обонятельной рецепции. Рецепторы вкуса; теории вкусовой рецепции.
- •61. Зрительный анализатор. Структурные основы зрительной рецепции. Анализ световых ощущений. Цветовосприятие.
- •62. Слуховой анализатор. Структурные основы слуховой рецепции. Механизмы рецепции и анализа звуков.
- •64. Гемостаз. Значение системы гомеостаза для жизнедеятельности организма. Факторы свертывания и последовательность их включения в процесс образования кровяного сгустка.
- •65. Группы крови. Иммуногенетика групп крови. Агглютинины и агглютиногены. Резус-фактор. Переливание крови, донорство. Социальная роль донорства.
- •67. Лейкоциты. Виды лейкоцитов. Защитные функции лейкоцитов. Роль т- и в-лимфоцитов в обеспечении иммунологической защиты организма.
- •68. Внешнее дыхание. Показатели внешнего дыхания (легочная вентиляция, диффузионная способность легких, жизненная емкость легких).
- •69. Внутреннее дыхание. Физиологическая роль и биохимические основы внутреннего дыхания. Внутреннее дыхание при мышечной деятельности.
- •70. Регуляция дыхания. Дыхательный центр.
- •71. Гуморальные факторы регуляции дыхания. Рефлекторные механизмы регуляции дыхания.
- •73. Сердце – центральный орган кровообращения. Сократительная функция сердца. Фазы сердечной деятельности. Проводящая система сердца.
- •74. Физиологические свойства сердечной мышцы (автоматия, возбудимость, проводимость, сократимость). Возбудимость водителей ритма. Возбудимость и рефрактерность сердечной мышцы.
- •75. Физиологические основы гемодинамики. Скорость и объем кровотока. Время кругооборота крови.
- •76. Ударный и минутный объем крови. Артериальное давление. Давление в капиллярах и венах. Изменение гемодинамических показателей при физических нагрузках.
- •77. Биоэлектрическая активность сердца. Электрокардиография. Виды отведений экг.
- •78. Регуляция сердечной деятельности. Регуляция работы сердца при физических нагрузках. Адаптация аппарата кровообращения к физическим нагрузкам.
- •79. Регуляция гемодинамики. Центральные механизмы регуляции гемодинамики. Гуморальные факторы регуляции.
- •80. Рефлекторная регуляция сердечно-сосудистой системы. Сосудодвигательный центр.
70. Регуляция дыхания. Дыхательный центр.
ОТВЕТ: Для нормального протекания в тканях окислительных процессов необходимо, чтобы газовый состав крови (то есть концентрация в плазме кислорода и углекислого газа) поддерживался на определённом уровне. Вместе с тем, как потребление и выделение газов тканями, так и их содержание газов во вдыхаемом воздухе может существенно меняться. Для того, чтобы газовый состав крови оставался постоянным в меняющихся условиях, существует система регуляции дыхания. Эта система обеспечивает изменение вентиляции (то есть, по сути, частоты и глубины дыхания) в соответствии условиями внешней среды и потребностями организма.
В центральной нервной системе существует группа нейронов, обеспечивающих регуляцию дыхания. Их объединяют под названием дыхательный центр. Дыхательный центр находится в различных отделах центральной нервной системы.
В спинном мозге к нему относят α-мотонейроны, управляющие работой дыхательных мышц, то есть ядро диафрагмального нерва (иннервирует диафрагму) и нейроны передних рогов спинного мозга (иннервируют межрёберные мышцы). Однако нейроны спинного мозга не способны обеспечивать дыхательные движения самостоятельно, они находятся под контролем ядер продолговатого мозга.
В продолговатом мозге находятся группы нейронов, генерирующих дыхательный ритм и посылающих импульсы к спинному мозгу. Выделяют нейроны, обеспечивающие вдох – инспираторные, и выдох – экспираторные. Нейроны вдоха находятся в дорсальных отделах продолговатого мозга на дне IV желудочка, они образуют дорсальную дыхательную группу. В вентральной дыхательной группе, расположенной спереди и латерально, имеются как инспираторные, так и экспираторные нейроны.
В верхней части моста (задний мозг) находится пневмотаксический центр. Он играет важную роль в регуляции продолжительности фаз вдоха и выдоха, отвечает за смену этих фаз.
В регуляции дыхания также принимают участие гипоталамус и кора больших полушарий.
Гипоталамус оказывает влияние на частоту и глубину дыхания при физической нагрузке, повышении температуры тела и окружающей среды, при возникновении сильных эмоций.
Кора больших полушарий обеспечивает произвольный контроль дыхательных движений (человек может осознанно менять частоту и глубину дыхания, задерживать дыхание). Кроме того, за счёт коры происходит условно-рефлекторная регуляция дыхания. Например, у спортсменов учащение и углубление дыхания может появляться перед стартом, когда физической нагрузки ещё нет.
Таким образом, дыхательный центр представляет собой группу связанных между собой нейронов, расположенных в спинном и продолговатом мозге, мосту, гипоталамусе и коре больших полушарий.
71. Гуморальные факторы регуляции дыхания. Рефлекторные механизмы регуляции дыхания.
ОТВЕТ: Основной задачей вентиляции является поддержание нормального газового состава крови, то есть содержания в ней кислорода и углекислого газа. Для решения этой задачи дыхательный центр должен постоянно получать информацию о концентрации этих газов в крови. Изменение активности дыхательного центра в ответ на повышение или снижение уровня кислорода и углекислого газа называется гуморальной регуляцией дыхания.
Существует два типа рецепторов, чувствительных к содержанию О2 и СО2 (хеморецепторов) – центральные и периферические.
Периферические рецепторы находятся в каротидных тельцах – специальных клубочках, расположенных в месте разветвления общей сонной артерии на наружную и внутреннюю. Эти рецепторы возбуждаются при снижении концентрации кислорода.
Центральные хеморецепторы находятся на поверхности продолговатого мозга. Они косвенно реагируют на повышение содержания углекислого газа в крови.
Информация с этих рецепторов поступает в дыхательный центр. При снижении концентрации кислорода и повышении содержания углекислого газа происходит увеличение вентиляции (глубины и частоты дыхания), направленное на нормализацию уровня этих газов (углекислый газ выводится, кислород поступает). Следует отметить, что дыхательный центр в большей степени чувствителен к изменению концентрации СО2, чем О2. В экспериментах было показано, что увеличение содержания СО2 в альвеолах на 0,2% ведет к увеличению вентиляции легких на 100%; а снижение в воздухе кислорода с 21 до 12% увеличивает дыхательную функцию лишь на 44%.
Рефлекторная регуляция дыхания. Кроме газового состава крови на дыхание влияет также информация, поступающая с механорецепторов. В дыхательных путях выделяют следующие типы механорецепторов:
Ирритантные – рецепторы слизистой оболочки дыхательных путей – воспринимают действие пыли, едких веществ, реагируют на изменение объема легких. В ответ на раздражение ирритантных рецепторов происходит сужение бронхов и увеличение частоты дыхания.
Рецепторы растяжения гладких мышц дыхательных путей и бронхов, реагируют на увеличение объема легких при вдохе. Информация с этих рецепторов поступает по волокнам блуждающего нерва в дыхательный центр, при этом происходит смена фаз дыхания (с вдоха на выдох). Этот рефлекс (смена вдоха на выдох при растяжении лёгких) называется рефлексом Геринга-Брейера.
J-рецепторы («юкстакапиллярные» рецепторы) залегают в стенках альвеол около капилляров. Они реагируют на введение различных химических веществ в лёгочные сосуды. Кроме того юкстакапиллярные рецепторы реагируют на переполнение кровью легочных капилляров и повышение объема интерстициальной жидкости стенок альвеол. Импульсы от этих рецепторов идут по волокнам блуждающих нервов, вызывая частое поверхностное дыхание. При сильном раздражении J-рецепторов возможна полная остановка дыхания.
72. Потребление кислорода в покое и при мышечной работе. Максимальное потребление кислорода, кислородный запрос, кислородный долг. Регуляция дыхания при физических нагрузках. Адаптация системы дыхания к мышечной работе. Влияние систематической мышечной деятельности на изменение кислородного режима организма.
ОТВЕТ: При мышечной работе, под влиянием повышенного содержания углекислого газа в крови, а также образующихся кислых продуктов обмена (лактат) происходит активация дыхательного центра, что вызывает усиление вентиляции. Происходит увеличение как глубины, так и частоты дыхания. Максимальная вентиляция лёгких (минутный объём дыхания) может достигать 80 – 100 л/мин, а у тренированных спортсменов – ещё больших значений.
При физической нагрузке существенно возрастает потребность в питательных веществах и в кислороде, поскольку окислительные процессы в работающих мышцах протекают намного более интенсивно. Количество кислорода, необходимое для полного совершения выполняемой работы, называется кислородным запросом. Как правило, при интенсивной физической нагрузке дыхательная и сердечно-сосудистая системы не в состоянии доставить количество кислорода, достаточное, чтобы полностью покрыть кислородный запрос. В крови накапливаются промежуточные продукты обмена (в первую очередь, молочная кислота, лактат), поэтому даже после прекращения мышечной работы потребность в кислороде остаётся повышенной по сравнению с состоянием покоя. Количество кислорода, необходимое для окисления накопившихся при нагрузке промежуточных продуктов обмена, называется кислородным долгом.
Максимальное потребление кислорода. Интегральным (общим) показателем мощности аэробной системы энергообеспечения является максимальное потребление кислорода (МПК). Это максимальное количество кислорода, которое может потребить и усвоить организм во время наиболее интенсивной работы. Величина МПК зависит целого ряда факторов, каждый из которых определяет способность транспортировать или утилизировать О2:
состояние дыхательной системы (в первую очередь, вентиляции) – обеспечивает поступление кислорода в организм;
состояние системы крови (её количество, вязкость, содержание гемоглобина) – обеспечивает транспорт кислорода тканям
состояние сердечно-сосудистой системы (работа сердца, способность сосудов расширяться, состояние системы микроциркуляции) – обеспечивает транспорт кислорода тканям;
количество активных мышечных волокон и плотность в них митохондрий – обеспечивает утилизацию кислорода.
Изменения в системе дыхания под влиянием тренированности. При регулярной физической нагрузке (особенно аэробной, то есть длительной нагрузке умеренной интенсивности) в дыхательной системе происходит ряд изменений, направленных на более эффективную деятельность.
Под влиянием систематических тренировок увеличивается просвет дыхательных путей (трахеи и бронхиального дерева), за счёт чего через них легче проходит воздух. Повышается объём и вентиляционная способность лёгких. У нетренированных мужчин максимальная жизненная емкость легких обычно составляет 3,0 – 3,5 л, максимальная произвольная вентиляция легких – 80 – 100 л/мин, частота дыхания в покое – 12 – 14 циклов в минуту, максимальная частота дыхания – 40 – 60 циклов. У спортсменов высокого класса, тренирующихся в видах спорта с преимущественным развитием выносливости, максимальная ЖЕЛ может достигать 7 – 8 л, максимальная вентиляция легких – 180 – 220 л/мин и более, частота в покое у них ниже – 5 – 8 циклов в мин.
Такое повышение вентиляции у спортсменов высокого уровня связано с увеличением силы и выносливости дыхательных мышц, особенно мышц выдоха, а также увеличением объема легких.
Кроме того, у физически тренированных лиц легче происходит диффузия газов в лёгких. Это связано с увеличением количества капилляров вокруг лёгочных альвеол, повышением общей площади альвеол, а также ростом объёма крови в лёгочных капиллярах.