
- •Сырье и основные процессы органического синтеза.
- •Метанол. Применение метанола, физико-химические основы производства.
- •Технологическая схема производства метанола.
- •Этиловый спирт. Применение, получение методом сернокислотной гидратации.
- •Получение этилового спирта методом прямой гидратации этилена. Технологическая схема.
- •Состав нефти. Важнейшие нефтепродукты.
- •Общий состав
- •Углеводородный состав
- •Элементный состав нефти и гетероатомные компоненты
- •Первичная переработка нефти. Прямая перегонка.
- •8.Классификация методов переработки нефти.
- •Термический крекинг.
- •10.Термические процессы ( пиролиз, коксование нефтяных остатков).
- •Термокаталитические процессы ( каталитический крекинг).
- •Каталитический риформинг, гидрокрекинг.
- •Химическая технология неорганических веществ (структура). Сырье.
- •Получение водорода электролизом воды.
- •Получение водорода газификацией топлив.
- •Получение водорода электролизом водного раствора хлорида натрия.
- •Конверсия метана. Классификация и химизм процессов.
- •Высокотемпературная некаталитическая конверсия метана.
- •Двухступенчатый метод конверсии метана.
- •Применение аммиака. Физико-химические основы производства.
- •Влияние температуры, давления и катализаторов на равновесие и скорость окисления аммиака.
- •Основные технологические стадии процесса синтеза аммиака.
- •Технологические схемы синтеза аммиака.
- •Основные технологические стадии производства азотной кислоты.
- •Влияние температуры, давления и катализаторов на равновесие и скорость окисления аммиака.
- •Процесс окисления оксида азота.
- •Системы производства азотной кислоты.
- •Основные технологические узлы производства азотной кислоты.
- •Свойства и применение серной кислоты. Способы получения серной кислоты.
- •Принципиальная технологическая схема получения серной кислоты из серы.
- •Классификация минеральных удобрений.
- •Получение аммиачной селитры.
- •Получение простого суперфосфата.
- •Производство кальцинированной соды.
- •1. Нейтрализация карбонатных растворов.
- •Экологические проблемы химической промышленности.
- •Классификация хтп (химико-технологических процессов).
- •Основные показатели хтп технологические ( степень превращения, селективность, выход продукта, расходные коэффициенты ).
- •Основные экономические показатели хтп ( производительность, мощность, себестоимость).
- •Основные эксплуатационные показатели хтп ( надежность, безопасность).
- •Основные социальные показатели хтп (экологическая чистота, степень автоматизации).
- •Закон сохранения вещества, как основа материальных расчетов.
- •Закон сохранения энергии, как основа тепловых расчетов.
- •Закон действующих масс.
- •Равновесный выход, зависимость его от константы равновесия.
- •Применение принципа Ле Шателье в химической технологии.
- •Скорость процессов, влияние основных факторов на скорость.
- •Уравнение Аррениуса.
- •Способы увеличения скорости химических реакций. Гомогенные процессы.
- •Гетерогенные процессы. Общая характеристика гетерогенных процессов.
- •Диффузионная и кинетическая области протекания реакций.
- •Способы увеличения скорости протекания гетерогенных реакций.
- •Примеры:
- •Закон действующих масс (к. Гульдберг, п.Вааге, 1867г.)
- •Виды схем: функциональная, технологическая и операторная схемы.
8.Классификация методов переработки нефти.
Термический крекинг
1. Термический крекинг жидкого нефтяного сырья под высоким давлением (от 20 до 70 ат).
2. Термический крекинг нефтяных остатков при низком давлении (коксование, деструктивная перегонка).
3. Пиролиз жидкого и газообразного нефтяного сырья.
Вся эта группа процессов характеризуется применением в зоне реакции высоких температур — примерно от 450 до 1200° С. Под действием высокой температуры нефтяное сырье разлагается (собственно крекинг). Этот процесс сопровождается вторичными реакциями уплотнения вновь образовавшихся углеводородных молекул.
Термический крекинг под высоким давлением применяют для переработки относительно легких видов сырья (от лигроина до мазута включительно) с целью получения автомобильного бензина. Процесс ведут при 470—540° С. При переработке нефтяных остатков — полугудронов и гудронов — целевым продуктом обычно является котельное топливо, получаемое в результате снижения вязкости исходного остатка. Такой процесс неглубокого разложения сырья носит название легкого крекинга, или висбрекинга. Вис-брекинг проводят под давлением около 20 ат.
Термический крекинг нефтяных остатков при низком давлении проводят в направлении их «декарбонизации», т. е. концентрирования асфальто-смолистых веществ сырья в твердом продукте — коксе и получения в результате этого более богатых водородом продуктов: газойля, бензина и газа. Такая форма термического крекинга называется коксованием. Нередко кокс является целевым продуктом этого процесса.
Разновидность термического крекинга нефтяных остатков при низком давлении — так называемая деструктивная перегонка, направлена на получение максимального выхода соляровых фракций при минимальном количестве тяжелого жидкого остатка*.
Коксование и деструктивную перегонку проводят при давлении, близком к атмосферному, и температуре 450—550° С.
Пиролиз — наиболее жесткая форма термического крекинга. Сырье пиролиза весьма разнообразно. Температура процесса 670 — 800° С и выше, давление близко к атмосферному. Цель процесса — получение газообразных непредельных углеводородов, в основном этилена; в качестве побочных продуктов образуются ароматические углеводороды (бензол, толуол, нафталин).
Существуют и промежуточные формы термического крекинга, например парофазный крекинг, осуществляемый при низком давлении и температуре около 600° С. Парофазный крекинг предназначен для производства бензина; одновременно получаются и большие выходы газа, богатого непредельными углеводородами. В настоящее время промышленных установок парофазного крекинга не сооружают.
Предложен также вариант процесса коксования остаточного сырья при жестком режиме (около 600° С) с целью повышенного газообразования и ароматизации жидких продуктов. Продукты крекинга могут быть использованы как сырье для нефтехимических синтезов.
Каталитические процессы крекинга и риформинга
1. Каталитический крекинг нефтяного сырья типа газойлей (реже — остаточного) на алюмосиликатных катализаторах.
2. Каталитический риформинг (преобразование) бензиновых фракций в присутствии платинового или окисномолибденового катализатора.
Основное назначение каталитического крекинга — получение бензина и дизельного топлива. Температура процесса 450—500° С, т. е. близка к температуре термического крекинга, но качество получаемого бензина значительно выше.
Сущность каталитического риформинга заключается в ароматизации бензиновых фракций, протекающей в результате каталитического преобразования нафтеновых и парафиновых углеводородов. Продуктами процесса являются высокооктановый ароматизированный бензин или, после соответствующих операций с целью их извлечения, индивидуальные ароматические углеводороды (бензол, толуол, ксилолы), которые используют в нефтехимической промышленности.
Гидрогенизационные процессы
В результате термокаталитических преобразований нефтяного сырья под давлением водорода можно получать продукты крекинга весьма благоприятного состава. В зависимости от глубины и назначения воздействия водорода различают следующие разновидности гидрогенизационных процессов.
1. Гидроочистка. Процесс проводят с целью облагораживания бензинов, дизельных топлив, масел и других нефтепродуктов путем разрушения содержащихся в них сернистых соединений и удаления серы в виде сероводорода *.
2. Деструктивная гидрогенизация. Процесс заключается в крекинге твердого и жидкого сырья под давлением 300—700 ат. Высокое парциальное давление водорода в зоне реакции позволяет подвергать крекингу такие тяжелые виды сырья, как уголь, сланцы, тяжелую смолу полукоксования углей и нефтяные остатки типа гудрона. Температура процесса 420—500° С. Катализаторы содержат железо, вольфрам, молибден, никель. Целевым продуктом является обычно бензин, но можно отбирать и более тяжелые дистилляты (типа дизельного и котельного топлив).
3. Гидрокрекинг. В процессе применяют разбавители тяжелого жидкого сырья, а также новые эффективные катализаторы. Это позволило значительно снизить давление в реакционной зоне (до 30'—200 ат) и уменьшить расход водорода.
Каталитическая переработка углеводородных газов и легчайших бензиновых фракций
1. Полимеризация олефиновых газообразных углеводородов.
2. Алкилирование газообразных и жидких изопарафиновых углеводородов олефинами.
3. Алкилирование ароматических углеводородов олефинами.
4. Дегидрогенизация бутановой и пентановой фракций.
5. Изомеризация нормального бутана и легких бензиновых углеводородов.
Все эти процессы осуществляют с целью получения либо компонентов топлива, либо исходного сырья для нефтехимической промышленности. Режимы перечисленных вариантов переработки легких углеводородов и применяемые катализаторы настолько разнообразны, что обобщить эти процессы не представляется возможным.