
- •Сырье и основные процессы органического синтеза.
- •Метанол. Применение метанола, физико-химические основы производства.
- •Технологическая схема производства метанола.
- •Этиловый спирт. Применение, получение методом сернокислотной гидратации.
- •Получение этилового спирта методом прямой гидратации этилена. Технологическая схема.
- •Состав нефти. Важнейшие нефтепродукты.
- •Общий состав
- •Углеводородный состав
- •Элементный состав нефти и гетероатомные компоненты
- •Первичная переработка нефти. Прямая перегонка.
- •8.Классификация методов переработки нефти.
- •Термический крекинг.
- •10.Термические процессы ( пиролиз, коксование нефтяных остатков).
- •Термокаталитические процессы ( каталитический крекинг).
- •Каталитический риформинг, гидрокрекинг.
- •Химическая технология неорганических веществ (структура). Сырье.
- •Получение водорода электролизом воды.
- •Получение водорода газификацией топлив.
- •Получение водорода электролизом водного раствора хлорида натрия.
- •Конверсия метана. Классификация и химизм процессов.
- •Высокотемпературная некаталитическая конверсия метана.
- •Двухступенчатый метод конверсии метана.
- •Применение аммиака. Физико-химические основы производства.
- •Влияние температуры, давления и катализаторов на равновесие и скорость окисления аммиака.
- •Основные технологические стадии процесса синтеза аммиака.
- •Технологические схемы синтеза аммиака.
- •Основные технологические стадии производства азотной кислоты.
- •Влияние температуры, давления и катализаторов на равновесие и скорость окисления аммиака.
- •Процесс окисления оксида азота.
- •Системы производства азотной кислоты.
- •Основные технологические узлы производства азотной кислоты.
- •Свойства и применение серной кислоты. Способы получения серной кислоты.
- •Принципиальная технологическая схема получения серной кислоты из серы.
- •Классификация минеральных удобрений.
- •Получение аммиачной селитры.
- •Получение простого суперфосфата.
- •Производство кальцинированной соды.
- •1. Нейтрализация карбонатных растворов.
- •Экологические проблемы химической промышленности.
- •Классификация хтп (химико-технологических процессов).
- •Основные показатели хтп технологические ( степень превращения, селективность, выход продукта, расходные коэффициенты ).
- •Основные экономические показатели хтп ( производительность, мощность, себестоимость).
- •Основные эксплуатационные показатели хтп ( надежность, безопасность).
- •Основные социальные показатели хтп (экологическая чистота, степень автоматизации).
- •Закон сохранения вещества, как основа материальных расчетов.
- •Закон сохранения энергии, как основа тепловых расчетов.
- •Закон действующих масс.
- •Равновесный выход, зависимость его от константы равновесия.
- •Применение принципа Ле Шателье в химической технологии.
- •Скорость процессов, влияние основных факторов на скорость.
- •Уравнение Аррениуса.
- •Способы увеличения скорости химических реакций. Гомогенные процессы.
- •Гетерогенные процессы. Общая характеристика гетерогенных процессов.
- •Диффузионная и кинетическая области протекания реакций.
- •Способы увеличения скорости протекания гетерогенных реакций.
- •Примеры:
- •Закон действующих масс (к. Гульдберг, п.Вааге, 1867г.)
- •Виды схем: функциональная, технологическая и операторная схемы.
Основные экономические показатели хтп ( производительность, мощность, себестоимость).
Производительность (мощность) производства - количество получаемого продукта или количество перерабатываемого сырья в единицу времени:
П = G/t,
Где: П - производительность; G - количество получаемого продукта или перерабатываемого сырья за время t.
Обычно производительность выражают в количестве продукта за 1 ч или 1 сут, показывая максимальную возможность производства в непрерывном режиме. Производительность за длительный срок работы - один год - учитывает плановые остановки производства. Поэтому для химических производств для связи часовой или суточной производительности с годовой принимают, что производство работает 8000 ч, или 330 сут, в году.
Значение П зависит, конечно, от конкретного производства. Крупнотоннажные производства выпускают десятки и сотни тысяч тонн продукта в год: серной кислоты - 360-500 тыс. т в год (1080 - 1500 т/сут), аммиака - до 450 тыс. т в год (1360 т/сут). Установки первичной переработки нефти потребляют до 2 млн. т сырья в год. В малотоннажных производствах (реактивы, редкие металлы, продукты тонкого органического синтеза) производительность составляет килограммы и даже граммы продукта в час.
Себестоимость продукции - суммарные затраты на получение единицы продукта. Себестоимость складывается из следующих расходов: затрат на сырье, энергию, вспомогательные материалы; единовременные, капитальные затраты, распределяемые равномерно на срок эксплуатации оборудования; затраты на оплату труда работников. Общая структура себестоимости С:
С = (ΣЦiGHi + кЗк + Зт)/Gп,
Где: Цi и GHi - цена и количество израсходованных сырья, энергии, материалов на производство продукта в количестве Gп; Зк - капитальные затраты; к - коэффициент окупаемости капитальных затрат (их доля, отнесенная на время производства количества продукта Gп; в среднем для химических производств к = 0,15 в расчете на годовую производительность Gп); Зт - оплата труда.
Себестоимость имеет денежное выражение.
Основные эксплуатационные показатели хтп ( надежность, безопасность).
Эксплуатационные показатели характеризуют изменения, возникающие в химико-технологическом процессе и производстве во время их эксплуатации при появлении отклонений от регламентированных условий и состояний. Влияние отклонений на показатели процесса, возможность управления процессом определяются эксплуатационными показателями.
Надежность характеризуют средним временем безаварийной работы либо числом аварийных остановов оборудования или производства в целом за определенный отрезок времени. Этот показатель зависит от качества используемого оборудования и правильности его эксплуатации.
Безопасность функционирования - вероятность нарушений, приводящих к нанесению вреда или ущерба обслуживающему персоналу, оборудованию, а также окружающей среде, населению.
Чувствительность к нарушениям режима и изменению условий эксплуатации; определяется отношением изменения показателей процесса к этим отклонениям.
Управляемость и регулируемость характеризуют возможность поддерживать показатели процесса в допустимых пределах, определяют величину допустимых изменений условий процесса, управляющие параметры и их взаимовлияние (сложность управления).