
- •Сырье и основные процессы органического синтеза.
- •Метанол. Применение метанола, физико-химические основы производства.
- •Технологическая схема производства метанола.
- •Этиловый спирт. Применение, получение методом сернокислотной гидратации.
- •Получение этилового спирта методом прямой гидратации этилена. Технологическая схема.
- •Состав нефти. Важнейшие нефтепродукты.
- •Общий состав
- •Углеводородный состав
- •Элементный состав нефти и гетероатомные компоненты
- •Первичная переработка нефти. Прямая перегонка.
- •8.Классификация методов переработки нефти.
- •Термический крекинг.
- •10.Термические процессы ( пиролиз, коксование нефтяных остатков).
- •Термокаталитические процессы ( каталитический крекинг).
- •Каталитический риформинг, гидрокрекинг.
- •Химическая технология неорганических веществ (структура). Сырье.
- •Получение водорода электролизом воды.
- •Получение водорода газификацией топлив.
- •Получение водорода электролизом водного раствора хлорида натрия.
- •Конверсия метана. Классификация и химизм процессов.
- •Высокотемпературная некаталитическая конверсия метана.
- •Двухступенчатый метод конверсии метана.
- •Применение аммиака. Физико-химические основы производства.
- •Влияние температуры, давления и катализаторов на равновесие и скорость окисления аммиака.
- •Основные технологические стадии процесса синтеза аммиака.
- •Технологические схемы синтеза аммиака.
- •Основные технологические стадии производства азотной кислоты.
- •Влияние температуры, давления и катализаторов на равновесие и скорость окисления аммиака.
- •Процесс окисления оксида азота.
- •Системы производства азотной кислоты.
- •Основные технологические узлы производства азотной кислоты.
- •Свойства и применение серной кислоты. Способы получения серной кислоты.
- •Принципиальная технологическая схема получения серной кислоты из серы.
- •Классификация минеральных удобрений.
- •Получение аммиачной селитры.
- •Получение простого суперфосфата.
- •Производство кальцинированной соды.
- •1. Нейтрализация карбонатных растворов.
- •Экологические проблемы химической промышленности.
- •Классификация хтп (химико-технологических процессов).
- •Основные показатели хтп технологические ( степень превращения, селективность, выход продукта, расходные коэффициенты ).
- •Основные экономические показатели хтп ( производительность, мощность, себестоимость).
- •Основные эксплуатационные показатели хтп ( надежность, безопасность).
- •Основные социальные показатели хтп (экологическая чистота, степень автоматизации).
- •Закон сохранения вещества, как основа материальных расчетов.
- •Закон сохранения энергии, как основа тепловых расчетов.
- •Закон действующих масс.
- •Равновесный выход, зависимость его от константы равновесия.
- •Применение принципа Ле Шателье в химической технологии.
- •Скорость процессов, влияние основных факторов на скорость.
- •Уравнение Аррениуса.
- •Способы увеличения скорости химических реакций. Гомогенные процессы.
- •Гетерогенные процессы. Общая характеристика гетерогенных процессов.
- •Диффузионная и кинетическая области протекания реакций.
- •Способы увеличения скорости протекания гетерогенных реакций.
- •Примеры:
- •Закон действующих масс (к. Гульдберг, п.Вааге, 1867г.)
- •Виды схем: функциональная, технологическая и операторная схемы.
Получение аммиачной селитры.
Аммиачную селитру получают нейтрализацией азотной кислоты газообразным аммиаком
Эта практически необратимая реакция протекает с большой скоростью и с выделением значительного количества тепла. Обычно ее ведут при давлении, близком к атмосферному; в некоторых странах работают установки, где нейтрализация протекает под давлением 0,34 МПа. В производстве селитры используется разбавленная 47—60%-ная азотная кислота. Тепло реакции нейтрализации используется на испарение воды и концентрирование раствора.
Промышленное производство включает следующие стадии: нейтрализацию азотной кислоты газообразным аммиаком в аппарате ИТН (использование тепла нейтрализации); упаривание раствора селитры, гранулирование плава селитры, охлаждение гранул, обработка гранул ПАВ, упаковку, хранение и погрузку селитры, очистку газовых выбросов и сточных вод. Добавки вводят при нейтрализации азотной кислоты.
На рис. У-1 приведена схема современного крупнотоннажного агрегата АС-72 мощностью 1360 т/сут. Поступающая 58— 60%-ная азотная кислота подогревается в подогревателе 1 до 70—80°С соковым паром из аппарата ИТН 3 и подается на нейтрализацию. Перед аппаратами 3 в азотную кислоту добавляют термическую фосфорную и серную кислоты в количестве 0,3—0,5% Р2О5 и 0,05—0,2% сульфата аммония, считая на готовый продукт.
Серная и фосфорная кислоты подаются плунжерными насосами, производительность которых легко и точно регулируется. В агрегате установлены два аппарата нейтрализации, работающие параллельно. Сюда же подается газообразный аммиак, нагретый в подогревателе 2 паровым конденсатом до 120—130°С. Количество подаваемых азотной кислоты и аммиака регулируют таким образом, чтобы на выходе из аппарата ИТН раствор имел небольшой избыток азотной кислоты (2—5 г/л), обеспечивающий полноту поглощения аммиака
В нижней части аппарата происходит нейтрализация кислот при температуре 155—170 °С получением раствора, содержащего 91—92% NH4N03. В верхней части аппарата водяные пары (так называемый соковый пар) отмываются от брызг аммиачной селитры и паров HN03. Часть тепла сокового пара используется на подогрев азотной кислоты. Далее соковый пар направляют на очистку в промывные скрубберы и затем выбрасывают в атмосферу.
Кислый раствор аммиачной селитры направляют в донейтрализатор 4, куда поступает аммиак в количестве, необходимом для донейтрализации раствора. Затем раствор подают в выпарной аппарат 5 на доупарку, которая ведется водяным паром под давлением 1,4 МПа и воздухом, нагретым примерно до 180 °С. Полученный плав, содержащий 99,8—99,7% селитры, при 175 °С проходит фильтр 21 и центробежным погружным насосом 20 подается в напорный бак 6, а затем в прямоугольную металлическую грануляционную башню 16 длиной 11м, шириной 8 м и высотой от верха до конуса 52,8 м.
В верхней части башни расположены грануляторы 7 и 5; в нижнюю часть башни подают воздух, охлаждающий капли селитры, которые превращаются в гранулы. Высота падения частиц селитры 50—55 м. Конструкция грануляторов обеспечивает получение гранул однородного гранулометрического состава с минимальным содержанием мелких гранул, что уменьшает унос воздухом пыли из башни. Температура гранул на выходе из башни равна 90—110°С, поэтому их направляют для охлаждения в аппарат кипящего слоя 15. Аппарат кипящего слоя — прямоугольный аппарат, имеющий три секции и снабженный решеткой с отверстиями. Под решетку вентиляторами подается воздух, при этом создается кипящий слой гранул селитры высотой 100—150 мм, которые поступают по транспортеру из грануляционной башни. Происходит интенсивное охлаждение гранул до температуры 40 °С (но не выше 50 °С), соответствующей условиям существования IV модификации. Если температура охлаждающего воздуха ниже 15 °С, то перед поступлением в аппарат кипящего слоя воздух подогревают в теплообменнике до 20 °С. В холодный период времени в работе могут находиться 1—2 секции. .
Воздух из аппарата 15 поступает в грануляционную башню для образования гранул и их охлаждения.
Гранулы аммиачной селитры из аппарата кипящего слоя подают транспортером 14 на обработку поверхностно-активным веществом во вращающийся барабан 11. Здесь гранулы опрыскивают распыленным 40%-ным водным раствором диспергатора НФ. После этого селитра проходит электромагнитный сепаратор для отделения случайно попавших металлических предметов и направляется в бункер, а затем на взвешивание и упаковку в бумажные или полиэтиленовые мешки. Мешки транспортером подают для погрузки в вагоны или на склад.
Воздух, выходящий из верхней части грануляционной башни, загрязнен частицами аммиачной селитры, а соковый пар из нейтрализатора и паровоздушная смесь из выпарного аппарата содержит непрореагировавшие аммиак и азотную кислоту и частицы унесенной аммиачной селитры. Для очистки в верхней части грануляционной башни установлены шесть параллельно работающих промывных скрубберов тарельчатого типа 10, орошаемых 20—30%-ным раствором аммиачной селитры, которая подается насосом 18 из бака. Часть этого раствора отводится в нейтрализатор ИТН для промывки сокового пара, а затем подмешивается к раствору аммиачной селитры и, следовательно, идет на выработку продукции.
Из цикла непрерывно отводится часть раствора (20—30% ) поэтому цикл обедняется и восполняется добавкой воды. На выходе из каждого скруббера установлен вентилятор 9 производительностью 100 000 м3/ч, который отсасывает воздух из грануляционной башни и выбрасывает его в атмосферу.