
- •Заттардың коллоидты күйі
- •Коллоидты ерітінділер
- •1 Коллоидты химия пәні
- •4. Коллоидты ерітінділер
- •Тақырыбы : Беттік құбылыстар мен адсорбция. Беттік керілу
- •Кейбір заттың беттік керілуі
- •Сұйықтардың беттік керілуі
- •Кейбір кристалдың беттік керілуі
- •Дәрістің тақырыбы : баз-дар туралы түсінік
- •Дәріс № Коллоидты epітінділердің тұрақтылығы Коллоидты жүйелердің тұрақтылық түрлері
- •2. Кинетикалық факторлар:
- •Коллоидты ерітінділердің кинетикалық тұрактылығы
- •Агрегативтi немесе құрылымдық тұрақтылық
- •Длфо теориясы
- •Физикалық адсорбция
- •Химиялық адсорбция
- •Адсорбция тvрлерi
- •Катиониттегi реакция
- •Аниониттегi реакция
- •Суспензияның седиментациялық анализ
- •Суспензияның классификациясы
- •Сұйытылған суспензияларды алу әдістері
- •Сұйытылған суспензия қаситеттері
- •Сұйық суспензиялардың оптикалық қасиеттері
- •Сулы суспензиялардың электрокинетикалық қасиеттері:
- •Сұйытылған суспензиялардың молекулярлы-кинетикалық қасиеттері:
- •Сүйытылған суспензиялардың седиментациялық тұрақтылығы
- •Аэрозольдер
- •Аэрозольдер классификациясы
- •Аэрозольдердің алыну жолдары
- •Конденсациялық әдістер
- •Аэрозоль бөлшектерінің өлшемі
- •Аэрозоль бөлшектерінің формасы ( пішіні)
- •Аэрозоль структурасы ( құрылысы)
- •Беттік қасиеттері
- •Аэрозольдердің оптикалық қасиеттері
- •Аэрозольдардың молекулалы-кинетикалық қасиеттері
- •Аэрозольдердің электрлік қасиеттері.
- •Агрегативті тұрақтылық коагуляция
- •Аэрозольдерді бұзу әдістері.
- •Аэрозольдерді практикада қолдану.
- •Тағамдық аэрозольдер
- •Коллоидты epтінділердің тұрақтылығы Коллоидты жүйелердің тұрақтылық түрлері
- •Коллоидты ерітінділердің кинетикалық тұрактылығы
- •Агрегативтi немесе құрылымдық тұрақтылық
- •Осмостық қысым
- •Сұйытылған өрітінділердің осмос қысымы
- •Электрокинетикалық құбылыстар. Электрокинетикалық потенцияға әсер етуші факторлар
- •Электрокинетикалық құбылыстар
- •Иондарға ыдырау нәтижесінде зарядтың пайда болуы
- •Штерн теориясы
- •Индифференniк емес злектрлиттердiti есерлерi
- •Коллоидты системаларды тазарту
- •Коллоидты-дисперсті системаларды алу
- •Коагуляция.
- •2. Дәрістің жоспары:
- •Көбіктің құрамы
- •Көбіктің қасиеттеріне және әсер ететін жағдайлар
Коллоидты-дисперсті системаларды алу
Затты ұнтақтап конденсациялау әдістерімен коллоидты бөлшектер алуға болады. Коллоидты ерітіндідегі бөлшектер бірімен бірі өзара қақтығысқанда, олардың жабысып, іріленуіне кедергі болатын тұрақтандырғыштардың (стабилизаторлардың) болуы қажет (мысалы, электролит иондарының коллоидты бөлшектің бетіндегі ионды – гидратты қабықша). Коллоидты бөлшектер дисперстік ортада (еріткіште) нашар еруі керек. Осы айтылған жайдың бәрі бірдей орындалғанда коллоидты системадағы бөлшектердің тұнбаға түсуіне кедергі болатын электр заряды мен гидратты қабықша пайда болады.
А. Дисперстік әдістер. Дисперстік әдіс берілген үлкен қатты затты әуелі майдалап, сосын оны ұнтақтап, коллоидты-дисперсті бөлшектерге дейін кішірейтуге бағытталған. Мұның өзін бірнеше әдіспен жүзеге асырады.
Механикалық әдіс. Механикалық әдіс берілген қатты заттың үлкен бөлшектерін ұзақ және тоқтаусыз, әрі жылдам ысқылау, ұнтақтау сияқты механикалық жолмен кішірейтуге бағытталған. Бұл арнайы машиналармен жүзеге асырылады, шары бар және коллоидты диірмендер қолданылады. Шары бар диірмен – (техникада оны шарлы, шарлық диірмен дейді) ішінде әр түрлі өлшемдегі болат не фарфор, тіпті кейде басқа да заттардан әзірленген шары бар, іші қуыс болат цилиндр. Әдетте диірмен ішіндегі астар мен шариктер біртекті және ұнтаұталатын заттан едәуір қатты болады. Осындай диірмен ішіне дисперстелетін зат пен түрлі өлшемдегі шарлар бірге салынады да белгілі жылдамдықпен электромотор көмегімен айналдырады. Ондағы ұнтақталу шар көмегімен жүзеге асады. Мұндай диірмендер әр түрлі дисперстелген жүзгіндерді алу үшін кеңінен пайдаланылады. Әйтседе бұл диірменде ұсақталған заттардың дисперстілік дәрежесі төмен, ондағы бөлшектердің диаметрі – 50-60мкм шамасында.
Егер дисперстік дәрежесі жоғары зат керек болса, онда арнаулы коллоидты диірмен пайдаланылады. Мұндай коллоидты диірменнің бір түрін Плауссон 1920 жылы ұсынды. Ол – іші қуыс цилиндр, ішіндегі қалақшалары бар ратор минутына 20мыңға дейін жылдамдықпен айналады(59-сурет).
Д
иірмен
ішкі будырлы бөлігі (а) мен ротор қалақшасы
(в) арасына түскен зат біліктің жылдам
айналуынан ұнтақталады (ұнтақталу
дәрежесі 0,1-1,0 мкм). Ұнтақталған бөлшектердің
өзара бірігіп, жабысып қалмауы үшін
тұрақтандырғыштар қосады.
Ультрадыбысты әдіс. Соңғы кезде заттарды ультрадыбыс әдісімен ұнтақтау кең таралуда. Ультрадыбыстың әсер етуші механизмі әлі де болса толық зерттелмегендіктен, оның кейбір жайы мен мәні түсініксіз. Сұйық бөлшектері системадағы өте тез ауысатын қысым мен кеңею салдарынан бөліне келіп, ұнтақталуы мүмкін деген болжамдар бар. Ультрадыбысты қондырғылардың өнімділігі аса жоғары.
Химиялық әдіс арқылы ұнтақтаудың арасында пептизация әдісі жиі таралған. Бұл процесс пептизатор деп аталатын ұнтақтайтын зат әсерімен жүріп, гельді зольге айналдырады. Бұл алынған борпылдақ шөгіндіге пептизатор қосып, оны коллоидты бөлшектерге дейін ұнтақтауға негізделген. Пептизатор ретінде қолданылатын электролиттер бөлшектерді біріктіріп, оларды жеке коллоидты бөлшек түрінде ұстайды. Демек, электролиттер аморфты шөгінділерді өзара бірігуден, агрегацияланудан қорғайды екен. Бұған мысал ретінде темір (ІІІ) гидроксидінің золін алуға болады. Жалпы темір (ІІІ) гидрооксидін тұнбаға түсірмеу үшін оған пептизатор ретінде темір (ІІІ) хлоридінің ерітіндісін қосады. Мұндайда темір (ІІІ) гидроксиді бірден тұнбаға түспей, золь түрінде жүзіп жүреді. Химиялық дисперстеу әдістерінің арасында өздігінен ұнтақталатын тәсіл де белгілі. Бұл негізінен әрбір жағдайға сәйкес таңдалып алынған еріткіш көмегімен коллоидты ерітінді алуға бағытталған. Мысалы, крахмал, желатин, агар-агарды суда еріткенде коллоидты ерітінділер алынады. Мұндағы еріткіш (су) – пептизатор. Осы процесс өздігінен жүреді. Бұл әдіс, әсіресе, қатты полимерлерді арнайы алынған еріткіштерді еріту арқылы жоғары молекулалық қосылыстардың ерітіндісін әзірлеуге кеңінен пайдаланылады.
Б. Конденсациялау әдістері. Коллоидты ерітінділерді алудың конденсациялау әдістерінің басым көпшілігін тотығу, тотықсыздану, гидролиз сияқты химиялық реакцияларға негізделген. Бұл реакциялар кезінде ерітінділер еріген заттардың ерімейтін күйге ауысуы нәтижесінде коллоидтыға түрленеді. Сондай-ақ, конденсациялау әдісі химиялық реакциялармен қатар олардың конденсациялануы сияқты физикалық құбылыстармен де сипатталады. Конденсациялау әдістерінің маңызды түрлеріне қысқаша тоқталайық.
Тотығу. Тотығу реакциясы алынатын заттардың бірі коллоидты күйдегі бөлшек түрінде түзіледі. Мысалы, сутекті күкірттің оттек немесе күкірт (ІҮ) оксидімен тотығу реакциясын алуға болады. Осы реакция кезінде бөлінетін бос күкірт коллоидты күйдегі ерітінді береді:
Көптеген зерттеулер көрсетіп отырғандай, бұл реакцич жай ғана тотығу реакциясы сияқты емес, өте күрделі жүріп, қосымша тиоқышқылдар пайда болады екен.
Тотықсыздану. Коллоидты ерітінділерді химиялық әдістер арқылы алу жолдарының арасында, әр түрлі ерітінділердегі металдарды тотықсыздандыру реакциясы кең таралған. Бұл реакция кезіндегі металл иондары тотықсызданып, бос атомға айналады да, конденсацияланып немесе өзара бірімен-бірі бірігіп, коллоидты өлшемдегі бөлшекке дейін үлкейеді. Бұған мысал ретінде сутек пероксиді немесе формалин арқылы тотықсыздандырып, алтын золін алуда келтіруге болады:
Тотықсыздандыру реакциясын пайдаланып, күміс, платина, палладий, торий, осмий, сынап сияқты көптеген металдардың коллоидты күйдегі ерітінділері алынады.
Алмасымды ыдырау. Күрделі екі химиялық қосылыс өзара әрекеттескенде әуелі иондарға ыдырап, сосын иондармен аламасады. Осы кезде жаңадан түзілетін қосылыстардың бірі ерітіндіде еріместен, тұнбаға шөгінді ретінде түсуге бейім келеді. Егер осындағы мұндай заттарды коллоидты өлшемдегі бөлшек қалпында ұстаса, онда осы қосылыстың золі пайда болады.
Мұндағы барий сульфаты мен хлориді тұнбаға түседі. Ал осы ерітінділерді өте төменгі концентрация кезінде араластырса, онда бүкіл ерітінді көлеміне бірдей таралған өте ұсақ түйіршіктер пайда болады. Осы бөлшектерді тұрақтандыру үшін желатин ерітіндісін қосса, ол әлгі бөлшектерді сыртынан орап, біріктірмейді. Мінеки, осындайда тұрақты коллоидты ерітінді туындайды.
Гидролиз. Көптеген металдардың тұздары жеңіл гидролизденіп, метал гидроксиді мен қышқылға ыдырайды. Осындай реакция кезінде пайда болатын металл гидроксидтері нашар еритін болса, онда түрлі коллоидты ерітінді шығады. Мысалы, өте әлсіз негіз бен аса күшті тұз қышқылының тұзы – темір (ІІІ) хлориді гидролиз реакциясы арқылы нашар еритін темір (ІІІ) гидроксидіне және тұз қышқылына ыдырайды:
Осы реакция кезіндегі пайда болатын темір тұзы (FeOCl) ішінара иондарға диссоциацияланады: FeOCl↔FoO++Cl-. Осы иондар темір (ІІІ) гидроксидінен тұратын бөлшектердің айналасында болатын ионогенді қабатпен қамтамасыз етіледі және осының салдарынан да олар ерітіндіде қалқып, жүзгін түрінде жүреді, яғни тұнбаға түспейді.
Еріткішті ауыстыру. Нағыз ерітіндінің еріткішін басқа еріткішпен алмастырғанда жаңадан пайда болған ерітіндіде ерімейтін аса жоғары дисперсті фазадағы коллоидты система туындайды. Мысалы, кәдімгі ағаш шайыры спиртте өте жақсы еріп, нағыз ерітінді түзеді. Осы ерітіндіге таза суды біртіндеп қосса, онда бастапқы нағыз ерітінді коллоидты ерітіндіге айналады. Мұнда спирт суда жақсы ериді де, ағаш шайыры спиртте жақсы ерігенімен суда нашар еритіндіктен, аса жоғары дисперсті фазадағы коллоидты ерітіндіге айналады. Осындай әдіспен күкірттің, фосфордың, ағаштан алынатын хош иісті қара майдың, полимерлердің тағы да басқа көптеген заттардың коллоидты түрін алуға болады.
Электрлік әдіс. Бұл әдісті 1998 жылы Бредич ұсынған болатын. Көбінесе электрлік әдісті асыл металдардың коллоидты ерітінділерін алу үшін қолданады. Әдетте платина, алтын, күміс сияқты коллоидты ерітінділер алынатын асыл металдардан әзірленген су ішіндегі екі электрод арасында электр доғасын тудырады. Осы кезде электрод арасында пайда болған электр доғасының әсерінен шыққан өте жоғары температурада әуелгі асыл металл балқып буланады да, су ішінде салқындап, өлшемді коллоидты бөлшек шамасындағы дисперсті фаза құрайды. Бүкіл процесс сумен салқындату арқылы жүргізіледі.