
- •3 Генераторы с независимым возбуждением
- •4 Генераторы с параллельным возбуждением
- •5 Тахогенераторы постоянного тока
- •6 Электромагнитный усилитель поперечного поля
- •7 Электродвигатель постоянного тока
- •Принцип работы
- •Механическая характеристика
- •8 Исполнительные двигатели постоянного тока
- •9 Двигатель с полюсным управлением.
- •12 Универсальный коллекторный электродвигатель
- •Особенности конструкции
- •Достоинства и недостатки
- •Сравнение с коллекторным двигателем постоянного тока
- •Сравнение с асинхронным двигателем
- •Аналоги без коллекторного узла
- •13 Электрические машины переменного тока. Принцип действия. Принцип действия
- •15 Асинхронный двигатель. Принцип действия.
- •Принцип действия
- •16 Асинхронный двигатель при неподвижном роторе. Двигательный режим
- •17. Схема замещения асинхронного двигателя и его механическая характеристика.
- •18. Способы управления трёхфазным асинхронным двигателем.
- •Способы управления асинхронным двигателем
- •19 Режимы работы
- •Двигательный режим
- •Генераторный режим
- •Режим холостого хода
- •Режим электромагнитного тормоза (противовключение)[править | править исходный текст]
- •20. Способы торможения асинхронного двигателя.
- •Рекуперативное (генераторное) торможение
- •Торможение противовключением
- •Устройство[править | править исходный текст]
- •Принцип действия[править | править исходный текст]
- •Двигательный режим[править | править исходный текст]
- •Генераторный режим[править | править исходный текст]
- •Разновидности синхронных машин[править | править исходный текст]
- •28. Шаговые двигатели.
- •Описание
- •Использование
- •Датчик поворота
- •Преимущества и недостатки
- •29. Однофазный асинхронный двигатель с расчеплёнными полюсами.
- •30. Сквт (синусно-косинусный вращающий трансформатор).
- •31. Сквт. Первичное симметрирование.
- •33. Сквт. Вторичное симметрирование.
- •34. Сквт. Линейный режим работы.
- •35. Двигатели для микроперемещений.
- •36. Моментные двигатели.
- •37. Нейтральные электромагнитные реле постоянного тока.
- •38. Нейтральные электромагнитные реле переменного тока.
- •39. Поляризованное реле.
- •40. Герконы и ферины.
- •Параметры[править | править исходный текст]
- •Преимущества[править | править исходный текст]
- •Недостатки[править | править исходный текст]
- •Применение[править | править исходный текст]
12 Универсальный коллекторный электродвигатель
Строительный перфоратор и ударнаяэлектродрель в разрезе, синими стрелками указаны коллекторы электродвигателей.
Схема одного из вариантов УКД. Допускается работа и от постоянного, и от переменного тока
Универсальный коллекторный электродвигатель (УКД) — разновидность коллекторной машины постоянного тока, которая может работать и на постоянном, и на переменном токе. Получил большое распространение в ручном электроинструменте и в некоторых видах бытовой техники из-за малых размеров, малого веса, лёгкости регулирования оборотов, относительно низкой цены. Широко использовался на железных дорогах Европы и США как тяговый электродвигатель.
Особенности конструкции
Строго говоря, универсальный коллекторный электродвигатель является коллекторным электродвигателем постоянного тока с последовательно включенными обмотками возбуждения (статора), оптимизированным для работы на переменном токе бытовой электрической сети. Такой тип двигателя независимо от полярности подаваемого напряжения вращается в одну сторону, так как за счёт последовательного соединения обмоток статора и ротора смена полюсов их магнитных полей происходит одновременно и результирующий момент остаётся направленным в одну сторону. На самом деле там есть небольшой фазовый сдвиг, обуславливающий появление против направленного момента, но он невелик, симметрирование обмоток не только улучшает условия коммутации, но и уменьшает этот момент. (М. П. Костенко, «Электрические машины»). Для нужд железных дорог строились специальные подстанции переменного тока низкой частоты — 16 Гц в Европе, в США же частота 25 Гц была одной из стандартных (наряду с 60 Гц) до 50-х годов XX века. В 50-х годах XX века германо-французскому консорциуму производителей электрических машин удалось построить однофазную тяговую машину промышленной частоты (50 Гц). По данным М. П. Костенко «Электрические машины», электровоз с однофазными коллекторными машинами на 50 Гц испытывался в СССР, где получил восторженно-отрицательную оценку специалистов.[источник не указан 414 дней]).
Для возможности работы на переменном токе применяется статор из магнитно-мягкого материала, имеющего малый гистерезис (сопротивление перемагничиванию). Для уменьшения потерь на вихревые токи статор выполняют наборным из изолированных пластин. Подмножеством коллекторных машин переменного тока (КМПТ) являются машины «пульсирующего тока», полученного путем выпрямления тока однофазной цепи без сглаживания пульсаций (железная дорога).
Особенностью (в большинстве случаев — достоинством) работы такого двигателя именно на переменном токе (а не на постоянном такого же напряжения) является то, что в режиме малых оборотов (пуск и перегрузка) индуктивное сопротивление обмоток статора ограничивает потребляемый ток и соответственно максимальный момент двигателя (оценочно) до 3-5 от номинального (против 5-10 при питании того же двигателя постоянным током). Для сближения механических характеристик у двигателей общего назначения может применяться секционирование обмоток статора — отдельные выводы (и меньшее число витков обмотки статора) для подключения переменного тока.
Сложной проблемой является вопрос коммутации мощной коллекторной машины переменного тока. В момент коммутации (прохождение секцией нейтрали) сцепленное с секцией якоря (ротора) магнитное поле меняет свое направление на противоположное, что вызывает генерацию в секции так называемой реактивной ЭДС. Так обстоит дело в случае с постоянным током. В КМПТ реактивная ЭДС также имеет место. Но так как якорь (ротор) находится в пульсирующем во времени магнитном поле статора, в коммутируемой секции дополнительно имеет место ещё и трансформаторная ЭДС. Ее амплитуда будет максимальна в момент пуска машины, пропорционально снижаться по мере приближения к скорости синхронизма (в точке синхронизма она обратится в нуль) и далее по мере разгона машины вновь будет пропорционально возрастать. Проблема коммутации КМПТ может быть решена следующим образом:
Стремление при проектировании к одновитковой секции (уменьшение потока сцепления).
Увеличение активного сопротивления секции. Наиболее перспективными по данным М. П. Костенко являются резисторы в «петушках» коллекторых пластин, где они хорошо охлаждаются.
Активная подшлифовка коллектора щётками максимальной твёрдости (высокий износ) подгорающего коллектора из-за тяжелых условий коммутации; и максимально возможного сопротивления как средство гашения реактивной и трансформаторной ЭДС коммутируемой секции.
Использование добавочных полюсов с последовательными обмотками для компенсации реактивной ЭДС и параллельной — для компенсации трансформаторной ЭДС. Но так как величина трансформаторной ЭДС представляет собой функцию от угловой скорости (якоря) ротора и тока намагничивания машины, то такие обмотки нуждаются в системе подчинённого регулирования, не разработанной по сегодняшний день.
Применение питающих цепей низкой частоты. Популярные частоты 16 и 25 Гц.
Реверсирование УКД осуществляется переключением полярности включения обмоток только статора или только ротора.