
- •Содержание
- •10.1 Эффекты, связанные с ускорением систем отсчёта
- •10.2 Гравитационное отклонение света
- •10.3 Чёрные дыры
- •Девиация, кривизна пространства-времени
- •Ото, принцип эквивалентности
- •Экспериментальные подтверждения ото Эффекты, связанные с ускорением систем отсчёта
- •Гравитационное отклонение света
- •Чёрные дыры
- •Орбитальные эффекты
- •Увлечение инерциальных систем отсчёта
|
РЕФЕРАТ |
Теория относительности Эйнштейна |
Студент УрФУ, ПИ (филиал г. Каменск-Уральский) Группа: ММ-130203-КУ Шевыряв Алексей Игоревич Преподователь : ст. пр. Торопов Н.А
|
Содержание
Предыстория
Источник всеобщей проблемы
Эфир
Эйнштейн (краткая биография)
Этапы развития СТО
Принцип движения по геодезическим линиям
Девиация, кривизна пространства-времени
ОТО, принцип эквивалентности
Различие между ОТО и СТО
10.Экспериментальные подтверждения ОТО
10.1 Эффекты, связанные с ускорением систем отсчёта
10.2 Гравитационное отклонение света
10.3 Чёрные дыры
10.4 Орбитальные Эффекты
10.5 Увлечение инерциальных систем отсчёта
11.Заключение
ПРЕДЫСТОРИЯ
На рубеже XIX и XX веков в среде физиков царило нарастающее уныние. Научные руководители на полном серьёзе рекомендовали своим студентам не связывать карьеру с физикой, а отправляться на юрфак, ибо почти все законы уже были вроде бы открыты, и лет через 20—30, когда последние нюансы разрешатся, кормиться на ниве физики будет уже нечем. Кафедры физики позакрывают, а их бывшим научным сотрудникам раздадут мётлы для подметания коридоров юрфака.
Одним из таких не до конца ещё выясненных нюансов был вопрос: как скрестить механику Ньютона с уравнениями Максвелла (электродинамикой). Речь идёт о принципе относительности Галилея (в механике), его законе сложения скоростей, когда брошенный в движущемся вагоне мячик имел суммарную скорость относительно платформы w=v+u. И об опыте Майкельсона-Морли, когда интерференция оптических (электромагнитных) волн не менялась при повороте прибора относительно направления движения Земли (u=30 км/с). С точки зрения механики, должно было иметь место сложение скоростей с+u=c (где с — скорость света, u=30 км/с — скорость Земли) в «абсолютной» космической системе отсчёта, однако интерференция оставалась постоянной, чем подтвердила тот факт, что скорость света в любой системе отсчёта постоянна и равна c.
ИСТОЧНИК ВСЕОБЩЕЙ ПРОБЛЕМЫ
Внезапно была обнаружена нестыковка двух областей физики: проверенной временем и практикой механики Ньютона и сравнительно молодой науки электродинамики (в том числе описывающей распространение электромагнитных волн). Вот это распространение волн описывалось уравнениями Максвелла, которые тоже были многократно проверены экспериментом и сомнений не вызывали. Тогда уже было известно, что свет — это тоже электромагнитная волна, и, следовательно, скорость распространения электромагнитных волн равна скорости света. Но вот попытка поместить на движущийся поезд фонарик и посчитать, с какой там скоростью будет распространяться свет этого фонарика, заканчивалась провалом. В механике Ньютона скорости поезда и света надо было бы складывать, и уравнения Максвелла такого даже описать и не могли. Например, если лететь вдогонку за светом с такой же скоростью — со скоростью света, — то этот свет по уравнениям Максвелла… исчезал. Совершенно неотличимая ситуация становилась от того, как будто никакого света и не было.
ЭФИР
Замечено, что для распространения волны необходима среда, которая будет передавать колебания. Так, для распространения акустической волны (то есть звука) нужен, например, воздух. Брошенный в воду камень создаёт на её поверхности волны. Ну так может и электромагнитная волна распространяется в какой-то специфической среде? Вот это чудо-вещество и было названо эфиром. Эфир был одной из моделей, предназначенной сперва для описания электродинамики, а позднее — и гравитации, а также строения элементарных частиц.
В наиболее простых моделях считалось, что эфир и вещество — различные вещи, и первый не оказывает материи никакого сопротивления. Такую идею продвигал, к примеру, Больцман. Но подобный подход порождал проблемы: если эфир — идеальная жидкость, а частицы — идеальные шарики, то силы трения, которые отвечали за создание магнитного поля, исчезали, в противном случае возникало лобовое трение частиц об эфир. Магнитное поле вроде бы наблюдалось, и поэтому учёные сделали вывод: раз эфир у нас живёт сам по себе, то, двигаясь вместе с Землей, мы должны тереться об эфир. А поскольку этого трения не было заметно, ему требовалось приписать волшебные свойства — эфир должен одновременно быть и абсолютно плотным для проведения электромагнитных волн, и абсолютно разреженным во избежание энергетических потерь.
ЭЙНШТЕЙН
Альберт Эйнштейн родился 14 марта 1879 года в городе Ульме на юге Германии, в небогатой еврейской семье. Его отец, Герман Эйнштейн (1847—1902), был совладельцем маленького предприятия по производству перьевой набивки для матрасов и перин. Мать, Паулина Эйнштейн (в девичестве Кох, 1858—1920) была из семьи состоятельного торговца кукурузой Юлиуса Дерцбахера.
Начальное образование Альберт Эйнштейн получил в католической школе в Мюнхене. В возрасте 11-13 лет Эйнштейн пережил состояние глубокой религиозности. Но мальчик очень много читал и, вскоре, чтение научно-популярных книг сделало его вольнодумцем и навсегда вселило в него скептическое отношение к авторитетам.
Как это ни странно, но в гимназии он не был в числе первых учеников. Единственными предметами, где он преуспевал были математика и латынь. Эйнштейну очень многое не нравилось в гимназиии — в частности, устоявшаяся система механического заучивания материала гимназистами, а также авторитарное отношение учителей к ученикам. Он считал, что излишняя зубрежка наносит вред самому духу учёбы и творческому мышлению. Из-за этих разногласий Альберт Эйнштейн часто вступал в споры со своими преподавателями.
В школе Аарау Альберт Эйнштейн увлекся электромагнитной теорией Максвела и посвящал ей все свое свободное время. Осенью 1896 года он успешно сдал все выпускные экзамены в школе и получил аттестат, и в этом же году был принят в Политехникум на педагогический факультет. Учась в Политехникуме, Эйнштейн подружился с однокурсником, математиком Марселем Гроссманом (1878—1936), а также познакомился со своей будущей женой, сербской студенткой факультета медицины Милевой Марич (она была на 4 года старше его). В те времена чтобы получить швейцарское гражданство, требовалось уплатить 1000 швейцарских франков. Это были немаленькие деньги для семьи Эйнштейна. В 1896 году Альберт Эйнштейн отказался от германского гражданства, но только спустя 5 лет получил гражданство Швейцарии. В этом году фирма отца и брата окончательно разорилась, родители Эйнштейна переехали в Милан. Там Герман Эйнштейн, уже один без брата, открыл фирму по торговле электрооборудованием.
Учеба в швейцарском Политехе давалась Эйнштейну сравнительно легко. Стиль и методика преподавания здесь существенно отличались от закостеневшей и авторитарной прусской школы. У него были очень хорошие учителя, в том числе замечательный преподаватель геометрии Герман Минковский (его лекции Эйнштейн часто прогуливал, о чём потом искренне сожалел) и аналитик Адольф Гурвиц.
В 1900 году Эйнштейн закончил швейцарский Политех и получил диплом преподавателя математики и физики. Экзамены он сдал хорошо, но не блестяще. И, хотя многие преподаватели высоко оценивали способности студента Альберта Эйнштейна, никто не захотел помочь ему продолжить научную карьеру. В 1901 году Эйнштейн наконец получил гражданство Швейцарии, но вплоть до весны 1902 года не мог найти постоянное место работы. Из-за отсутствия заработка он голодал в буквальном смысле этого слова, не принимал пищу несколько дней подряд. Это стало причиной болезни печени, от которой ученый страдал всю свою оставшуюся жизнь.
ЭТАПЫ РАЗВИИТИЯ СТО
Особенно далеко в размышлениях продвинулись два товарища: вышеупомянутый Лоренц, чьи формулы представляли собой попытку объяснения необнаружения эфира , и Пуанкаре. Выводы теории относительности во многом совпадают с формулами, полученными в их работах, хотя авторы и основывались на других предпосылках. Однако Эйнштейн, проявив недюжинную гибкость ума и широту сознания, не останавливаясь даже в тех местах, где “обычный порошок ” не справляется, и другой теоретик уже давно бы зачеркнул все труды, и выбросил их, предложил альтернативную трактовку формул, подойдя к проблеме с другой стороны. Обычно физики ставили механику Ньютона на более приоритетное место и стремились подогнать уравнения Максвелла под неё. Но Эйнштейн пошел от противного, он утверждал, что по настоящему верны именно уравнения Максвелла, а механика Ньютона требует доработки!
О́бщая тео́рия относи́тельности (ОТО; нем. allgemeine Relativitätstheorie) — геометрическая теория тяготения, развивающая СТО, опубликованная Альбертом Эйнштейном в 1915—.1916 гг.
В рамках общей теории относительности, как и в других метрических теориях, постулируется, что гравитационные эффекты обусловлены не силовым взаимодействием тел и полей, находящихся в пространстве-времени, а деформацией самого́ пространства-времени, которая связана, в частности, с присутствием массы-энергии. Общая теория относительности отличается от других метрических теорий тяготения использованием уравнений Эйнштейна для связи кривизны пространства-времени с присутствующей в нём материей.
Принцип движения по геодезическим линиям
Если гравитационная масса точно равна инерционной, то в выражении для ускорения тела, на которое действуют лишь гравитационные силы, обе массы сокращаются. Поэтому ускорение тела, а следовательно, и его траектория не зависит от массы и внутреннего строения тела. Если же все тела в одной и той же точке пространства получают одинаковое ускорение, то это ускорение можно связать не со свойствами тел, а со свойствами самого́ пространства в этой точке.
Таким образом, описание гравитационного взаимодействия между телами можно свести к описанию пространства-времени, в котором двигаются тела. Естественно предположить, как это и сделал Эйнштейн, что тела движутся по инерции, то есть так, что их ускорение в собственной системе отсчёта равно нулю. Траектории тел тогда будут геодезическими линиями, теория которых была разработана математиками ещё в XIX веке.
Сами геодезические линии можно найти, если задать в пространстве-времени аналог расстояния между двумя событиями, называемый по традиции интервалом или мировой функцией. Интервал в трёхмерном пространстве и одномерном времени (иными словами, в четырёхмерном пространстве-времени) задаётся 10 независимыми компонентами метрического тензора . Эти 10 чисел образуют метрику пространства. Она определяет «расстояние» между двумя бесконечно близкими точками пространства-времени в различных направлениях. Геодезические линии, соответствующие мировым линиям физических тел, скорость которых меньше скорости света, оказываются линиями наибольшего собственного времени то есть времени, измеряемого часами, жёстко скреплёнными с телом, следующим по этой траектории.
Современные эксперименты подтверждают движение тел по геодезическим линиям с той же точностью, как и равенство гравитационной и инертной масс.