
- •Перелік термінів та позначень
- •Передмова
- •Частина 1. Початок програмування в срср. Витоки розвитку
- •1.1. Поява і розвиток технології програмування (1952–2012)
- •1.2. Формування технологічних напрямів (1965–1975)
- •1.3. Становленья технології програмування (1975–1982)
- •1.4. Розвиток інтерфейсу в технології програмування (1976–1992)
- •1.5. Розвиток об’єктної технології програмування (1992–2002)
- •1.6. Індустріальні основи технології програмування (2002–2012)
- •1.7. Навчання тп у кну Тараса Шевченко (1965–2012) та філії мфті (2000–2012)
- •Контрольні питання і завдання до частини 1
- •Список літератури до частини 1
- •Частина 2. Парадигми технології програмування
- •2.1. Модульне програмування та збиральний підхід
- •2.1.1. Інтерфейс в програмуванні
- •2.1.2. Зборка модулів по а.П.Єршову
- •2.1.3. Метод зборки готових програмних елементів
- •2.1.4. Формальне подання методу збирання різномовних модулів
- •2.2. Парадигма об’єктно-орієнтованого програмування
- •2.2.1. Базові концепції ооп
- •2.2.2. Чотирьох рівневе проектування ом
- •2.2.3. Концепції об’єктного аналізу
- •2.2.4. Функції, алгебра та операції об’єктного аналізу
- •2.2.5. Моделювання моделі ПрО
- •2.2.6. Опис параметрів інтерфейсу ом
- •2.3. Парадигма uml-метода моделювання
- •2.3.1 Основні діаграми методу
- •2.3.2. Моделювання поведінки системи
- •2.3.3. Побудова пс засобами uml
- •2.4. Парадигма компонентного програмування
- •2.4.1. Теоретичні аспекти компонентного програмування
- •2.4.2. Моделі компонентного програмування
- •2.4.3. Графове подання компонентної моделі ПрО
- •2.4.4. Об’єднання компонентів. Модель середовища
- •2.4.5. Компонентна алгебра
- •2.4.6. Іінструментальні засоби кп
- •2.4.7. Технологія компонентної розробки пс
- •2.4.8. Типізація і класифікація програмних компонентів
- •2.4.9. Жц проектування пс із типових компонентів та кпв
- •Розробка вимог до пс – це формування та опис функціональних, технологічних, організаційних та ін. Властивостей програмної системи, які необхідні чи бажані з точки зору кінцевого користувача.
- •Розгортання рпс. У випадку, коли рпс створюється для конкретного замовника, який є і користувачем, то деякі завдання розгортання виконуються на попередніх етапах. До них, зокрема, відносяться:
- •Супровід рпс компонентній пс характеризується наступними особливостями.
- •2.5. Парадигма аспектно-орієнтованого програмування
- •2.5.1.Основні елементи парадигми аоп
- •2.5.2. Засоби аоп
- •2.5.3. Підтримка аоп впродовж життєвого циклу пс
- •2.5.5. Методичні аспекти аоп
- •2.6. Парадигма генерувального програмування
- •2.6.1 Предметно-орієнтована мова – dsl
- •2.6.2. Простір проблем і рішень ПрО
- •2.6.3. Інженерія ПрО і кпв
- •2.7. Сервісно-орієнтоване програмування
- •2.7.1 Базові понятті сервісу Інтернет
- •2.7.2. Сервіси wcf мs.Net з контрактами
- •2.8. Парадигми теоретичного програмування
- •2.8.1 Алгебраїчне та інсерційне програмування
- •2.8.2. Реалізація агентних програм
- •2.8.3. Експлікативне, номінативне програмування
- •2.8.4. Алгоритмічні алгебри
- •Контрольні питання і завдання до частини 2
- •Список літератури до частини 2
- •Частина 3. Моделі і засоби проектування предметних областей
- •3.1. Моделі проектування ПрО предметних областей
- •3.1.1. Концептуальні моделі пс, спс за компонентами
- •3.1.2. Моделі взаємозв’язку об’єктів
- •3.1.3. Модель інтеграції (зборка) компонентів
- •3.1.4. Тестування прикладних і інтерфейсних об'єктів
- •3.1.5. Моделі взаємодії і варіабельності пс для організації обчислень
- •3.1.6. Підхід до виконання пс в сучасних розподілених середовищах
- •3.2. Онтологічний підхід до подання знань про проблемні області
- •3.2.1. Онтологічне моделювання проблемної області
- •3.2.2. Мовний опис онтології домену чи спс
- •3.2.3. Підхід до реалізація онтології ПрО
- •3.3. Типи даних та засоби їх генерації для використання в збиральному прогрмуванні
- •3.3.1. Проблема забезпечення сумісності типів даних при зборки кпв
- •3.3.2. Аксіоматика простих типів даних
- •3.3.3. Аксіоматика структурних і складних типів даних. Структурні типи даних.
- •3.3.4. Семантичні аспекти взаємодії різнорідних програм
- •3.3.5. Характеристика типів даних для зборки програм
- •3.3.6. Фундаментальні і загальні типи даних
- •3.3.6. Баові поняття стандарту з типів даних
- •3.3.7. Перебудова загальних типів даних до фундаментальних для мп
- •3.4. Підходи і методи доказу програм
- •3.4.1. Мови специфікації програм –vdm, raise, Concept
- •3.4.2. Концепторна мова специфікації
- •3.4.3. Методи доведення правильності програм
- •3.4.4. Модель доказу програми за твердженнями
- •З.5. Проектування пс засобами жц з реалізації доменів
- •3.4.1. За загальна характеристика стандарту жц iso/iec 12207:2002
- •3.4.2. Формування конкретних моделей життєвого циклу
- •3.4.3. Підходи до моделювання ПрО мовними засобами dsl
- •3.6. Модель якості пс
- •3.6.1. Структура моделі якості
- •3.6.2. Модель витрат сосомо Боєма
- •3.6.3. Інтегрована модель витрат на спс
- •Контрольні питання і завдання до частини 3
- •Список літератури до частини 3
- •Частина 4. Методи індустрії виробицтва програм і систем
- •4.1. Загальні основи методології виробництва пс і спс
- •4.1.1. Моделі взаємодії компонентів у пс
- •4.1.2 Методологічні аспекти виробництва спс з готових ресурсів
- •4.2. Мова опису моделей взаємодії на основі xml
- •4.2.1 Подання та обмін даними в компонентних моделях
- •4.2.3 Модель конфігурації компонентів на основі xml
- •4.3. Графове подання пс і спс
- •4.3.1 Графове визначення моделі взаємодії об'єктів
- •4.3.2 Типи зв’язків об’єктів у графової моделі ПрО
- •4.4. Розробка методів побудови проблемно-орієнтованих технологій
- •4.4.1. Аналіз динаміки розвитку фабрик програм
- •4.3.2. Базисні ресурси фабрики програм
- •4.5. Загальні лінії виробництва програм з кпв
- •4.4.1. М етодологія побудови тл
- •4.4.2. Нові дисципліни індустрії наукового совтвера
- •4.4.3. Новітні засоби Grid і Cloud для обчислення задач e–sciences
- •4.4.4. Сучасні системи побудови рпс з сервісних ресурсів
- •4.4.5. Методологія розроблення тл
- •4.4.6. Принципи проектування іс
- •4.5. Методи при оцінюванні економічних характеристик проектів
- •4.5.2. Формальний апарат експертно-аналітичного оцінювання об’єктів і процесів у спс
- •4.5.3. Методи оцінки розміру
- •4.6. Створення Windows застосувань
- •4.6.1. Створення нової програми.
- •4.6.2. Властивості і дизайн програм
- •4.6.3. Компіляція програм
- •2.5. Запуск застосунка
- •4.6.4. Розширення функціональності програм
- •4.7. Інженерії тестування програмних систем
- •4.7.1. Основні поняття інженерії тестування
- •4.7.2 Становлення інженерії тестування
- •4.7.3. Методи тестування. Метрики і критерії
- •4.7.4. Інструменти тестування та оцінювання
- •4.7.5. Тестування веб-застосувань
- •Контрольні питання і завдання до частини 4
- •Список літератури до частини 4
- •5.2. Фабрика програм в кну
- •5.2.3. Створення фабрики студентів
- •5.2.4. Лінії продуктів фабрики на головної сторінки
- •5.2.5. Принципи роботи з репозиторієм програм і артефактів
- •5.2.6. Навчання дисципліні “Програмна інженерія” на фабрики
- •5.3. Репозиторій кпв
- •5.3.1. Загальний опис репозиторію
- •5.3.2. Технологія обслуговування репозиторію кпв
- •5.4. Розробка кпв
- •5.4.1. Опис моделей кпв, інтерфейсу і операцій розробки кпв
- •5.4.2. Реалізація побудови компонентної системи
- •5.4.3. Процеси технології оброблення кпв
- •5.4.4. Зборка різномовних програм у середовищі Visual Studio
- •5.5. Конфігурація кпв
- •5.5.1. Конфігурування кпв з урахуванням варіабельності
- •5.5.2. Опис прикладу використання конфігуратору програм
- •5.6. Генерація систем мовою dsl
- •5.6.1. Лінія опису та генерації доменів dsl
- •5.6.2. Опис життєвого циклу пз та його реалізації на мові dsl
- •2.7. Онтологія – обчислювальна геометрія
- •5.7.1. Онтологія домену – Обчислювальна геометрія
- •5.7.3. Опис моделі онтології ПрО «Обчислювальна геометрія»
- •5.7.4. Опис програми домену «Обчислювальна геометрія» мовою owl
- •5.8. Оцінка якості пс
- •5.8.2. Оцінка витрат на продукт
- •5.8.3. Опис модуля прогнозування трудовитрат на розробку пс
- •5.8.4. Приклад оцінювання затрат на розробку пс ас
- •5.9.1. Опис веб-технології Java ee
- •5.9.3. Приклад взаємодії Java і ms.Net через веб-сервіси
- •5.9.4. Інструкція по використанню графічного інтерфейсу прикладу
- •5.10. Генерація тд
- •5.10.1. Відображення типів даних у середовищі ітк
- •5.10.2. Система генерації загальних типів даних до фундаментальних
- •5.11. Інструментальні засоби сайта ітк
- •5. 12. Розділ сайта «Технологія навчання»
- •Контрольні питання і завдання до частини 5
- •Список літератури до частини 5
- •Післямова
- •Додаток 1. Парадигма структурного програмування
- •Додаток 2. Приклад створення служб wcf у ms Visual Studio 2010
- •Додаток 3. Онтологічний підхід з подання тестування кпв та пс
- •Додаток 4. Оцінка застосування метода сосомо на конкретних даних
- •Додаток 5. Програма курсу «Технологія програмування іс»
3.2.1. Онтологічне моделювання проблемної області
Концепти онтології слугують для відображення знань, відповідно інтересам певної проблемної області. Джерелами таких знань можуть бути термінологічні або тлумачні словники у близьких проблемних областях, задокументовані вимоги на розроблення ПС, інші документи. Один з методів розгляду моделі проблемної області є ООП за загальними аксіомами:
реальний світ складають об'єкти, що взаємодіють між собою;
кожному об'єкту притаманний певний набір властивостей або атрибутів (аналог суттєвих ознак поняття);
атрибут визначається своїм іменем та значеннями, які він може приймати;
об'єкти можуть мати відношення одне з одним;
значення атрибутів та відношення можуть з часом зманюватись;
сукупність значень атрибутів конкретного об'єкту у певний момент часу визначає його стан;
сукупність станів об’єктів визначає стан світу;
світ та його об'єкти можуть перебувати у різних станах;
у певні інтервали часу можуть виникати якісь події;
події можуть спричиняти iншi події або змiни станів;
протягом часу кожний об'єкт може приймати участь у певних процесах, які зводяться до виконання послідовності дій, різновидами яких є переходи з одного стану до іншого під впливом відповідних подій, збудження певних подій чи посилання певних повідомлень до інших об’єктів;
дії, що їх можуть виконувати об'єкти, називають операціями об’єктів (як синоніми використовують також терміни "методи об'єкту" та "функції об'єкту");
можливі сукупності дій об'єкту називають його поведінкою;
об'єкти взаємодіють шляхом обміну повідомленнями;
об'єкти можуть складатися з частин.
Об'єкт – це певна абстракція даних та поведінки; множина екземплярів зi спільним складом атрибутiв та поведiнкою складає клас об'єктiв. Визначення об’єктів включає видиму та невидиму частини. Перша з них мстить уся відомості про взаємодію з об'єктом, i має назву інтерфейсу об'єкту, а друга містить подробиці його внутрішнього устрою i схована або, як кажуть, "iнкапсульована". Іншим засобом визначення об'єктiв є успадкування (еквівалент відношення узагальнення). Кажуть, що один клас об’єктів успадковує інший, якщо він повністю мiстить усi атрибути та поведiнку успадкованого класу, але має ще додатковi атрибути та (або) поведiнку. Клас, від якого успадковують, має назву суперкласу, а клас, що успадковує, має назву пiдкласу. Спадковість явним способом фіксує спільні та розбіжні риси об’єктів i дозволяє явно виділити складові компоненти проблеми, які можна використати у кількох випадках шляхом побудови для них декількох класiв-спадкоємцiв.
Виявлення об’єктів ПрО. Початковим кроком побудови онтології ПрО є виявлення суттєвих об’єктів, встановлення вiдношень мiж ними та надання їм унiкальних та значущих найменувань. Для класiв об'єктiв обираються значущi iмена, унiкальнi в межах домену.
Особливим джерелом для пошуку об`єктів може бути виявлення тих робіт у межах проблемної області, які становлять окремі завдання по досягненню певних професійних цілей, які бажано комп`ютерізувати, які можуть бути реалізовані за одне звернення до системи. Таким чином вiдбувається послiдовна декомпозицiя складностi кожної проблеми, яку можна виявити у домені ПрО:
складна проблема трансформується у сукупнiсть цiлей її досягнення або робіт, необхідних для її досягнення;
кожна з цiлей (або робіт) трансформується у сукупнiсть можливих прикладiв використання системи, тобто прикладiв досягнення цiлей (виконання робіт), що позначаються як сценарiї;
сценарiї трансформуються в процесi їх аналiзу у сукупнiсть взаємодiючих об'єктiв.
Визначений таким чином ланцюг трансформацiй проблема – цiлi або роботи – сценарiї – об'єкти вiдображає ступенi концептуалiзацiї, тобто досягнення розумiння проблеми, послiдовного зниження складностi її частин та пiдвищення рiвня формалiзацiї моделей останнiх. Для об’єктів устанавліваються атрибути, зв’язки і стани.