
- •Перелік термінів та позначень
- •Передмова
- •Частина 1. Початок програмування в срср. Витоки розвитку
- •1.1. Поява і розвиток технології програмування (1952–2012)
- •1.2. Формування технологічних напрямів (1965–1975)
- •1.3. Становленья технології програмування (1975–1982)
- •1.4. Розвиток інтерфейсу в технології програмування (1976–1992)
- •1.5. Розвиток об’єктної технології програмування (1992–2002)
- •1.6. Індустріальні основи технології програмування (2002–2012)
- •1.7. Навчання тп у кну Тараса Шевченко (1965–2012) та філії мфті (2000–2012)
- •Контрольні питання і завдання до частини 1
- •Список літератури до частини 1
- •Частина 2. Парадигми технології програмування
- •2.1. Модульне програмування та збиральний підхід
- •2.1.1. Інтерфейс в програмуванні
- •2.1.2. Зборка модулів по а.П.Єршову
- •2.1.3. Метод зборки готових програмних елементів
- •2.1.4. Формальне подання методу збирання різномовних модулів
- •2.2. Парадигма об’єктно-орієнтованого програмування
- •2.2.1. Базові концепції ооп
- •2.2.2. Чотирьох рівневе проектування ом
- •2.2.3. Концепції об’єктного аналізу
- •2.2.4. Функції, алгебра та операції об’єктного аналізу
- •2.2.5. Моделювання моделі ПрО
- •2.2.6. Опис параметрів інтерфейсу ом
- •2.3. Парадигма uml-метода моделювання
- •2.3.1 Основні діаграми методу
- •2.3.2. Моделювання поведінки системи
- •2.3.3. Побудова пс засобами uml
- •2.4. Парадигма компонентного програмування
- •2.4.1. Теоретичні аспекти компонентного програмування
- •2.4.2. Моделі компонентного програмування
- •2.4.3. Графове подання компонентної моделі ПрО
- •2.4.4. Об’єднання компонентів. Модель середовища
- •2.4.5. Компонентна алгебра
- •2.4.6. Іінструментальні засоби кп
- •2.4.7. Технологія компонентної розробки пс
- •2.4.8. Типізація і класифікація програмних компонентів
- •2.4.9. Жц проектування пс із типових компонентів та кпв
- •Розробка вимог до пс – це формування та опис функціональних, технологічних, організаційних та ін. Властивостей програмної системи, які необхідні чи бажані з точки зору кінцевого користувача.
- •Розгортання рпс. У випадку, коли рпс створюється для конкретного замовника, який є і користувачем, то деякі завдання розгортання виконуються на попередніх етапах. До них, зокрема, відносяться:
- •Супровід рпс компонентній пс характеризується наступними особливостями.
- •2.5. Парадигма аспектно-орієнтованого програмування
- •2.5.1.Основні елементи парадигми аоп
- •2.5.2. Засоби аоп
- •2.5.3. Підтримка аоп впродовж життєвого циклу пс
- •2.5.5. Методичні аспекти аоп
- •2.6. Парадигма генерувального програмування
- •2.6.1 Предметно-орієнтована мова – dsl
- •2.6.2. Простір проблем і рішень ПрО
- •2.6.3. Інженерія ПрО і кпв
- •2.7. Сервісно-орієнтоване програмування
- •2.7.1 Базові понятті сервісу Інтернет
- •2.7.2. Сервіси wcf мs.Net з контрактами
- •2.8. Парадигми теоретичного програмування
- •2.8.1 Алгебраїчне та інсерційне програмування
- •2.8.2. Реалізація агентних програм
- •2.8.3. Експлікативне, номінативне програмування
- •2.8.4. Алгоритмічні алгебри
- •Контрольні питання і завдання до частини 2
- •Список літератури до частини 2
- •Частина 3. Моделі і засоби проектування предметних областей
- •3.1. Моделі проектування ПрО предметних областей
- •3.1.1. Концептуальні моделі пс, спс за компонентами
- •3.1.2. Моделі взаємозв’язку об’єктів
- •3.1.3. Модель інтеграції (зборка) компонентів
- •3.1.4. Тестування прикладних і інтерфейсних об'єктів
- •3.1.5. Моделі взаємодії і варіабельності пс для організації обчислень
- •3.1.6. Підхід до виконання пс в сучасних розподілених середовищах
- •3.2. Онтологічний підхід до подання знань про проблемні області
- •3.2.1. Онтологічне моделювання проблемної області
- •3.2.2. Мовний опис онтології домену чи спс
- •3.2.3. Підхід до реалізація онтології ПрО
- •3.3. Типи даних та засоби їх генерації для використання в збиральному прогрмуванні
- •3.3.1. Проблема забезпечення сумісності типів даних при зборки кпв
- •3.3.2. Аксіоматика простих типів даних
- •3.3.3. Аксіоматика структурних і складних типів даних. Структурні типи даних.
- •3.3.4. Семантичні аспекти взаємодії різнорідних програм
- •3.3.5. Характеристика типів даних для зборки програм
- •3.3.6. Фундаментальні і загальні типи даних
- •3.3.6. Баові поняття стандарту з типів даних
- •3.3.7. Перебудова загальних типів даних до фундаментальних для мп
- •3.4. Підходи і методи доказу програм
- •3.4.1. Мови специфікації програм –vdm, raise, Concept
- •3.4.2. Концепторна мова специфікації
- •3.4.3. Методи доведення правильності програм
- •3.4.4. Модель доказу програми за твердженнями
- •З.5. Проектування пс засобами жц з реалізації доменів
- •3.4.1. За загальна характеристика стандарту жц iso/iec 12207:2002
- •3.4.2. Формування конкретних моделей життєвого циклу
- •3.4.3. Підходи до моделювання ПрО мовними засобами dsl
- •3.6. Модель якості пс
- •3.6.1. Структура моделі якості
- •3.6.2. Модель витрат сосомо Боєма
- •3.6.3. Інтегрована модель витрат на спс
- •Контрольні питання і завдання до частини 3
- •Список літератури до частини 3
- •Частина 4. Методи індустрії виробицтва програм і систем
- •4.1. Загальні основи методології виробництва пс і спс
- •4.1.1. Моделі взаємодії компонентів у пс
- •4.1.2 Методологічні аспекти виробництва спс з готових ресурсів
- •4.2. Мова опису моделей взаємодії на основі xml
- •4.2.1 Подання та обмін даними в компонентних моделях
- •4.2.3 Модель конфігурації компонентів на основі xml
- •4.3. Графове подання пс і спс
- •4.3.1 Графове визначення моделі взаємодії об'єктів
- •4.3.2 Типи зв’язків об’єктів у графової моделі ПрО
- •4.4. Розробка методів побудови проблемно-орієнтованих технологій
- •4.4.1. Аналіз динаміки розвитку фабрик програм
- •4.3.2. Базисні ресурси фабрики програм
- •4.5. Загальні лінії виробництва програм з кпв
- •4.4.1. М етодологія побудови тл
- •4.4.2. Нові дисципліни індустрії наукового совтвера
- •4.4.3. Новітні засоби Grid і Cloud для обчислення задач e–sciences
- •4.4.4. Сучасні системи побудови рпс з сервісних ресурсів
- •4.4.5. Методологія розроблення тл
- •4.4.6. Принципи проектування іс
- •4.5. Методи при оцінюванні економічних характеристик проектів
- •4.5.2. Формальний апарат експертно-аналітичного оцінювання об’єктів і процесів у спс
- •4.5.3. Методи оцінки розміру
- •4.6. Створення Windows застосувань
- •4.6.1. Створення нової програми.
- •4.6.2. Властивості і дизайн програм
- •4.6.3. Компіляція програм
- •2.5. Запуск застосунка
- •4.6.4. Розширення функціональності програм
- •4.7. Інженерії тестування програмних систем
- •4.7.1. Основні поняття інженерії тестування
- •4.7.2 Становлення інженерії тестування
- •4.7.3. Методи тестування. Метрики і критерії
- •4.7.4. Інструменти тестування та оцінювання
- •4.7.5. Тестування веб-застосувань
- •Контрольні питання і завдання до частини 4
- •Список літератури до частини 4
- •5.2. Фабрика програм в кну
- •5.2.3. Створення фабрики студентів
- •5.2.4. Лінії продуктів фабрики на головної сторінки
- •5.2.5. Принципи роботи з репозиторієм програм і артефактів
- •5.2.6. Навчання дисципліні “Програмна інженерія” на фабрики
- •5.3. Репозиторій кпв
- •5.3.1. Загальний опис репозиторію
- •5.3.2. Технологія обслуговування репозиторію кпв
- •5.4. Розробка кпв
- •5.4.1. Опис моделей кпв, інтерфейсу і операцій розробки кпв
- •5.4.2. Реалізація побудови компонентної системи
- •5.4.3. Процеси технології оброблення кпв
- •5.4.4. Зборка різномовних програм у середовищі Visual Studio
- •5.5. Конфігурація кпв
- •5.5.1. Конфігурування кпв з урахуванням варіабельності
- •5.5.2. Опис прикладу використання конфігуратору програм
- •5.6. Генерація систем мовою dsl
- •5.6.1. Лінія опису та генерації доменів dsl
- •5.6.2. Опис життєвого циклу пз та його реалізації на мові dsl
- •2.7. Онтологія – обчислювальна геометрія
- •5.7.1. Онтологія домену – Обчислювальна геометрія
- •5.7.3. Опис моделі онтології ПрО «Обчислювальна геометрія»
- •5.7.4. Опис програми домену «Обчислювальна геометрія» мовою owl
- •5.8. Оцінка якості пс
- •5.8.2. Оцінка витрат на продукт
- •5.8.3. Опис модуля прогнозування трудовитрат на розробку пс
- •5.8.4. Приклад оцінювання затрат на розробку пс ас
- •5.9.1. Опис веб-технології Java ee
- •5.9.3. Приклад взаємодії Java і ms.Net через веб-сервіси
- •5.9.4. Інструкція по використанню графічного інтерфейсу прикладу
- •5.10. Генерація тд
- •5.10.1. Відображення типів даних у середовищі ітк
- •5.10.2. Система генерації загальних типів даних до фундаментальних
- •5.11. Інструментальні засоби сайта ітк
- •5. 12. Розділ сайта «Технологія навчання»
- •Контрольні питання і завдання до частини 5
- •Список літератури до частини 5
- •Післямова
- •Додаток 1. Парадигма структурного програмування
- •Додаток 2. Приклад створення служб wcf у ms Visual Studio 2010
- •Додаток 3. Онтологічний підхід з подання тестування кпв та пс
- •Додаток 4. Оцінка застосування метода сосомо на конкретних даних
- •Додаток 5. Програма курсу «Технологія програмування іс»
2.8.2. Реалізація агентних програм
Поняття інтелектуального і програмного агента з'явилося понад 20 років тому, їхня роль у програмній інженерії увесь час зростає [19–23]. Так, Джекобсон [23] зазначив перспективу використання агентів як менеджерів проектів, розробників архітектури за діаграмами use case і ін.
Основний теоретичний базис даного програмування – темпоральна, модальна і мультимодельна логіки, дедуктивні методи доведення правильності властивостей агентів і ін.
З погляду програмної інженерії агент — це самодостатня програма, здатна керувати своїми діями в інформаційному середовищі функціонування для одержання результатів виконання поставленої задачі і зміни поточного стану середовища [19]. Агент має такі властивості:
– автономність – це здатність діяти без зовнішнього впливу;
– реактивність – це здатність реагувати на зміни даних, середовища і сприймати їх;
– активність – це здатність ставити мету і виконувати задані дії для досягнення цієї мети;
– здатність до взаємодії з іншими агентами (або людьми).
З інтелектуальним агентом зв'язані знання, що відображають переконання, намір, зобов'язання і т.п. Ці поняття входять у концептуальну модель і зв'язуються між собою операційними планами реалізації цілей агента. Для досягнення цілей інтелектуальні агенти взаємодіють один з одним, установлюють зв'язок між собою через повідомлення або запити і виконують задані дії або операції відповідно до наявних знань. Агенти можуть бути локальними і розподіленими (рис.5.12).
Локальні агенти виконують задані функції у певних серверах і клієнтських комп’ютерах мережі і впливають на загальний стан середовища функціонування. Розподілені агенти розміщуються в різних вузлах мережі, виконують автономно (паралельно, синхронно, асинхронно) притаманні їм функції і можуть впливати на загальний стан розподіленого середовища.
Рис. 5.12. Приклад взаємодії агентів у різних середовищах
Характер взаємодії між агентами залежить від сумісності цілей, компетентності і т.п. [21].
Основою агентного програмування є:
– формальна мова опису ментального стану агентів;
– мова специфікації інформаційних, часових, мотиваційних і функціональних дій агента в середовищі функціонування;
– засоби інтерпретації специфікацій агента;
– інструменти конвертування будь-яких програм у відповідні агентні програми.
Агенти взаємодіють між собою за допомогою таких механізмів, як координація, комунікація, кооперація або коаліція.
Під координацією агентів розуміють процес забезпечення функціонування агентів при погодженості їхньої поведінки і без взаємних конфліктів. Координація агентів визначається:
– взаємозалежністю цілей інших агентів-членів коаліції, а також від можливого впливу агентів один на одного;
– обмеженнями, що приймаються для групи агентів коаліції в рамках загального їхнього функціонування;
– компетенцією – знаннями умов середовища функціонування і ступенем їхнього використання.
Головний засіб комунікації агентів – транспортний протокол ТСР/IP або протокол агентів ACL (Agent Communication Languages). Керування агентами (Agent Management) виконується за допомогою сервісів: передача повідомлень між агентами, доступ агента до сервера і т.п. Комунікація агентів – це взаємодія між різними агентами через подання загальних протоколів Інтернету, а також опис повідомлень мовою HTML і декларативними або процедурними (Java, Telescript, ACL і т.п.) мовами. Кооперація агентів – це спільне виконання деяких завдань користувачів.
Прикладом активної і скоординованої діяльності агентів з пошуку необхідної інформації є середовище Інтернету. У ньому агенти забезпечують доступ до інформаційних ресурсів, а також виконують аналіз інформації, інтеграцію, фільтрацію і передачу результату запиту користувачеві
Кожен агент залежно від свого статусу (агент архіву, агент користувача, агент-диспетчер, інформаційний агент і ін.) виконує визначену функцію, передає один одному завдання на наступну дію з доступу до інформаційного ресурсу для витягу необхідної інформації і передачі її на обробку наступним агентам. Вибрану інформацію агенти обробляють, аналізують, фільтрують і передають результат клієнтові. Модель середовища взаємодії агентів складається з бази знань і бази даних, моделі інформаційних ресурсів, їхніх властивостей, правил роботи з ними і типів повідомлень. Як результат виконання запиту агенти створюють середовище і в будь-який момент часу вони змінюють свій стан за виконанням різних дій і з урахуванням виникнення нерегулярних станів (тупиків, нестачі ресурсу й ін.). Виходячи з отриманого індексу документу з репозитарію мережний робот–агент встановлює зв'язок з іншими агентами, що мають доступ до інформаційних ресурсів Інтернет, з метою формування відповіді користувачу на його запит.
У загальному випадку середовище, у якому діє агент, має визначену поведінку, що може бути відома цілком або частково. Головна особливість пошуку – бути проміжним середовищем, що виконує функції пошуку інформації за допомогою інформаційного агента, брокера, агента-користувача, агента-постачальника й ін.
Стан середовища залежить від інформації, що є у агента, а також від таких його властивостей: дискретності стану, детермінованості (чи ні) дій, динамічності або статичності середовища, синхронної або асинхронної зміни стану і т.п.
Для організації пошуку інформації за допомогою агентів створені мультиагентні пошукові системи (МАПС), що обробляють складні багаторазові запити, зв'язані з професійною діяльністю користувачів з пошуку в Інтернеті різного роду семантичної інформації. У цьому пошуку агенти забезпечують більш швидке і точне подання релевантної інформації на запит користувача мережі. МАПС реалізує ефективний обмін інформацією між інформаційним ресурсом і користувачем.
У даній структурі МАПС агент архіву забезпечує зіставлення добутої в Інтернеті інформації, заданої в запиті, і при її актуальності система видає відповідь на запит користувача.
Якщо інформація не знайдена, агент архіву передає запит агенту-диспетчеру для продовження пошуку. Він аналізує параметри і дані, запитує агента сервера інформаційних ресурсів про необхідну інформацію, що оцінюється на релевантність, і результат передає іншим агентам для подальшого обслуговування.
Агент-інтегратор поєднує відповіді на запити різних агентів інформаційних ресурсів у єдиний список для передачі його агентові, що фільтрує цей список, а потім передає його агенту-користувачу.
Однією із систем побудови агентів, заснованою на обміні повідомленнями, є система JATLite, що за допомогою Java-класів створює нових агентів, які обчислюють визначені функції в розподіленому середовищі. Система Agent Builder – це система конструювання програмних агентів, які описуються мовою Java і можуть взаємодіяти між собою, мовою KQML (Knowledge Query and Manipulation Language) [19–23].
Побудовані агенти виконують функції: менеджера проекту й онтологій, візуалізації, налагодження й ін. Реалізацію механізмів взаємодій агентів забезпечує система JAFMAS, ряд інших мультиагентних систем [19].