
- •Перелік термінів та позначень
- •Передмова
- •Частина 1. Початок програмування в срср. Витоки розвитку
- •1.1. Поява і розвиток технології програмування (1952–2012)
- •1.2. Формування технологічних напрямів (1965–1975)
- •1.3. Становленья технології програмування (1975–1982)
- •1.4. Розвиток інтерфейсу в технології програмування (1976–1992)
- •1.5. Розвиток об’єктної технології програмування (1992–2002)
- •1.6. Індустріальні основи технології програмування (2002–2012)
- •1.7. Навчання тп у кну Тараса Шевченко (1965–2012) та філії мфті (2000–2012)
- •Контрольні питання і завдання до частини 1
- •Список літератури до частини 1
- •Частина 2. Парадигми технології програмування
- •2.1. Модульне програмування та збиральний підхід
- •2.1.1. Інтерфейс в програмуванні
- •2.1.2. Зборка модулів по а.П.Єршову
- •2.1.3. Метод зборки готових програмних елементів
- •2.1.4. Формальне подання методу збирання різномовних модулів
- •2.2. Парадигма об’єктно-орієнтованого програмування
- •2.2.1. Базові концепції ооп
- •2.2.2. Чотирьох рівневе проектування ом
- •2.2.3. Концепції об’єктного аналізу
- •2.2.4. Функції, алгебра та операції об’єктного аналізу
- •2.2.5. Моделювання моделі ПрО
- •2.2.6. Опис параметрів інтерфейсу ом
- •2.3. Парадигма uml-метода моделювання
- •2.3.1 Основні діаграми методу
- •2.3.2. Моделювання поведінки системи
- •2.3.3. Побудова пс засобами uml
- •2.4. Парадигма компонентного програмування
- •2.4.1. Теоретичні аспекти компонентного програмування
- •2.4.2. Моделі компонентного програмування
- •2.4.3. Графове подання компонентної моделі ПрО
- •2.4.4. Об’єднання компонентів. Модель середовища
- •2.4.5. Компонентна алгебра
- •2.4.6. Іінструментальні засоби кп
- •2.4.7. Технологія компонентної розробки пс
- •2.4.8. Типізація і класифікація програмних компонентів
- •2.4.9. Жц проектування пс із типових компонентів та кпв
- •Розробка вимог до пс – це формування та опис функціональних, технологічних, організаційних та ін. Властивостей програмної системи, які необхідні чи бажані з точки зору кінцевого користувача.
- •Розгортання рпс. У випадку, коли рпс створюється для конкретного замовника, який є і користувачем, то деякі завдання розгортання виконуються на попередніх етапах. До них, зокрема, відносяться:
- •Супровід рпс компонентній пс характеризується наступними особливостями.
- •2.5. Парадигма аспектно-орієнтованого програмування
- •2.5.1.Основні елементи парадигми аоп
- •2.5.2. Засоби аоп
- •2.5.3. Підтримка аоп впродовж життєвого циклу пс
- •2.5.5. Методичні аспекти аоп
- •2.6. Парадигма генерувального програмування
- •2.6.1 Предметно-орієнтована мова – dsl
- •2.6.2. Простір проблем і рішень ПрО
- •2.6.3. Інженерія ПрО і кпв
- •2.7. Сервісно-орієнтоване програмування
- •2.7.1 Базові понятті сервісу Інтернет
- •2.7.2. Сервіси wcf мs.Net з контрактами
- •2.8. Парадигми теоретичного програмування
- •2.8.1 Алгебраїчне та інсерційне програмування
- •2.8.2. Реалізація агентних програм
- •2.8.3. Експлікативне, номінативне програмування
- •2.8.4. Алгоритмічні алгебри
- •Контрольні питання і завдання до частини 2
- •Список літератури до частини 2
- •Частина 3. Моделі і засоби проектування предметних областей
- •3.1. Моделі проектування ПрО предметних областей
- •3.1.1. Концептуальні моделі пс, спс за компонентами
- •3.1.2. Моделі взаємозв’язку об’єктів
- •3.1.3. Модель інтеграції (зборка) компонентів
- •3.1.4. Тестування прикладних і інтерфейсних об'єктів
- •3.1.5. Моделі взаємодії і варіабельності пс для організації обчислень
- •3.1.6. Підхід до виконання пс в сучасних розподілених середовищах
- •3.2. Онтологічний підхід до подання знань про проблемні області
- •3.2.1. Онтологічне моделювання проблемної області
- •3.2.2. Мовний опис онтології домену чи спс
- •3.2.3. Підхід до реалізація онтології ПрО
- •3.3. Типи даних та засоби їх генерації для використання в збиральному прогрмуванні
- •3.3.1. Проблема забезпечення сумісності типів даних при зборки кпв
- •3.3.2. Аксіоматика простих типів даних
- •3.3.3. Аксіоматика структурних і складних типів даних. Структурні типи даних.
- •3.3.4. Семантичні аспекти взаємодії різнорідних програм
- •3.3.5. Характеристика типів даних для зборки програм
- •3.3.6. Фундаментальні і загальні типи даних
- •3.3.6. Баові поняття стандарту з типів даних
- •3.3.7. Перебудова загальних типів даних до фундаментальних для мп
- •3.4. Підходи і методи доказу програм
- •3.4.1. Мови специфікації програм –vdm, raise, Concept
- •3.4.2. Концепторна мова специфікації
- •3.4.3. Методи доведення правильності програм
- •3.4.4. Модель доказу програми за твердженнями
- •З.5. Проектування пс засобами жц з реалізації доменів
- •3.4.1. За загальна характеристика стандарту жц iso/iec 12207:2002
- •3.4.2. Формування конкретних моделей життєвого циклу
- •3.4.3. Підходи до моделювання ПрО мовними засобами dsl
- •3.6. Модель якості пс
- •3.6.1. Структура моделі якості
- •3.6.2. Модель витрат сосомо Боєма
- •3.6.3. Інтегрована модель витрат на спс
- •Контрольні питання і завдання до частини 3
- •Список літератури до частини 3
- •Частина 4. Методи індустрії виробицтва програм і систем
- •4.1. Загальні основи методології виробництва пс і спс
- •4.1.1. Моделі взаємодії компонентів у пс
- •4.1.2 Методологічні аспекти виробництва спс з готових ресурсів
- •4.2. Мова опису моделей взаємодії на основі xml
- •4.2.1 Подання та обмін даними в компонентних моделях
- •4.2.3 Модель конфігурації компонентів на основі xml
- •4.3. Графове подання пс і спс
- •4.3.1 Графове визначення моделі взаємодії об'єктів
- •4.3.2 Типи зв’язків об’єктів у графової моделі ПрО
- •4.4. Розробка методів побудови проблемно-орієнтованих технологій
- •4.4.1. Аналіз динаміки розвитку фабрик програм
- •4.3.2. Базисні ресурси фабрики програм
- •4.5. Загальні лінії виробництва програм з кпв
- •4.4.1. М етодологія побудови тл
- •4.4.2. Нові дисципліни індустрії наукового совтвера
- •4.4.3. Новітні засоби Grid і Cloud для обчислення задач e–sciences
- •4.4.4. Сучасні системи побудови рпс з сервісних ресурсів
- •4.4.5. Методологія розроблення тл
- •4.4.6. Принципи проектування іс
- •4.5. Методи при оцінюванні економічних характеристик проектів
- •4.5.2. Формальний апарат експертно-аналітичного оцінювання об’єктів і процесів у спс
- •4.5.3. Методи оцінки розміру
- •4.6. Створення Windows застосувань
- •4.6.1. Створення нової програми.
- •4.6.2. Властивості і дизайн програм
- •4.6.3. Компіляція програм
- •2.5. Запуск застосунка
- •4.6.4. Розширення функціональності програм
- •4.7. Інженерії тестування програмних систем
- •4.7.1. Основні поняття інженерії тестування
- •4.7.2 Становлення інженерії тестування
- •4.7.3. Методи тестування. Метрики і критерії
- •4.7.4. Інструменти тестування та оцінювання
- •4.7.5. Тестування веб-застосувань
- •Контрольні питання і завдання до частини 4
- •Список літератури до частини 4
- •5.2. Фабрика програм в кну
- •5.2.3. Створення фабрики студентів
- •5.2.4. Лінії продуктів фабрики на головної сторінки
- •5.2.5. Принципи роботи з репозиторієм програм і артефактів
- •5.2.6. Навчання дисципліні “Програмна інженерія” на фабрики
- •5.3. Репозиторій кпв
- •5.3.1. Загальний опис репозиторію
- •5.3.2. Технологія обслуговування репозиторію кпв
- •5.4. Розробка кпв
- •5.4.1. Опис моделей кпв, інтерфейсу і операцій розробки кпв
- •5.4.2. Реалізація побудови компонентної системи
- •5.4.3. Процеси технології оброблення кпв
- •5.4.4. Зборка різномовних програм у середовищі Visual Studio
- •5.5. Конфігурація кпв
- •5.5.1. Конфігурування кпв з урахуванням варіабельності
- •5.5.2. Опис прикладу використання конфігуратору програм
- •5.6. Генерація систем мовою dsl
- •5.6.1. Лінія опису та генерації доменів dsl
- •5.6.2. Опис життєвого циклу пз та його реалізації на мові dsl
- •2.7. Онтологія – обчислювальна геометрія
- •5.7.1. Онтологія домену – Обчислювальна геометрія
- •5.7.3. Опис моделі онтології ПрО «Обчислювальна геометрія»
- •5.7.4. Опис програми домену «Обчислювальна геометрія» мовою owl
- •5.8. Оцінка якості пс
- •5.8.2. Оцінка витрат на продукт
- •5.8.3. Опис модуля прогнозування трудовитрат на розробку пс
- •5.8.4. Приклад оцінювання затрат на розробку пс ас
- •5.9.1. Опис веб-технології Java ee
- •5.9.3. Приклад взаємодії Java і ms.Net через веб-сервіси
- •5.9.4. Інструкція по використанню графічного інтерфейсу прикладу
- •5.10. Генерація тд
- •5.10.1. Відображення типів даних у середовищі ітк
- •5.10.2. Система генерації загальних типів даних до фундаментальних
- •5.11. Інструментальні засоби сайта ітк
- •5. 12. Розділ сайта «Технологія навчання»
- •Контрольні питання і завдання до частини 5
- •Список літератури до частини 5
- •Післямова
- •Додаток 1. Парадигма структурного програмування
- •Додаток 2. Приклад створення служб wcf у ms Visual Studio 2010
- •Додаток 3. Онтологічний підхід з подання тестування кпв та пс
- •Додаток 4. Оцінка застосування метода сосомо на конкретних даних
- •Додаток 5. Програма курсу «Технологія програмування іс»
2.1.1. Інтерфейс в програмуванні
Міжмодульний інтерфейс – це модуль-посередник інтерфейсу між передаючім і приймаючім модулями, що виконує функції передачі, прийому і перетворення не релевантних даних, переданих між ними для проведення обчислень. Мова визначення інтерфейсів модулів (МІМ) в системі АПРОП призначено для опису інтерфейсного посередника: типів даних (ТД) в мові опису поєднуваних модулів, оператори типу CALL для передачі вхідних і вихідних параметрів, операції перевірки правильності переданих та приймаючих параметрів. На основі опису посередників генерувався вихідний код інтерфейсу за допомогою бібліотеки функцій перетворення нееквівалентних ТД в класі МП ОС ЄС. Він відіграв важливу роль при виконанні різномовних модулів в ПС.
Міжмовний інтерфейс – сукупність засобів і методів представлення і перетворення структур і ТД МП за допомогою алгебраїчних систем (з алгеброю операцій і функцій інтерфейсу) забезпечення взаємно однозначного перетворення відрізняючи ТД в МП об’єднаних інтерфейсним мовним посередником (наприклад, перетворення матриці по рядках в Фортрані в матрицю по стовпцях в PL/1 і зворотно, символьних даних в ціле та ін.) Бібліотека інтерфейсу була передана за актами впровадження в 52 організації СРСР і широко користувалася розробниками програм у різних МП ОС ЄС [2, 36–39].
Технологічний інтерфейс – це сукупність методів і засобів для взаємозв'язку процесів і операцій ТЛ ЖЦ реалізації складних програм, включаючи нормативні, методичні документи та форми (каркасу ТЛ, форматів документів ТЛ, мову зв'язки процесів та ін.) Ці документи застосовуються при контролі результатів процесів, оцінки виконаних вимог та забезпечення показників якості, внесення змін до продукт на процесах ЖЦ і передачі його проміжного стану наступному процесові та ін. Методика створення ТЛ запропонована нами в 1987р. [30], апробована і вдосконалена на шести лініях АІС «Юпітер–470». Вона є першою роботою по формалізації та застосуванню ТЛ в проектах розробки великих інформаційних систем. Подальшим розвитком ТЛ є продуктові лінії (Product Lines) SEI http://sei.cmu.edu/productlines/frame_report/) в 2004 р.
Створена нами концепція інтерфейсу МП і модулів була автоматизована за допомогою . а інтерфейсних модулів–посередників, які генерувала система АПРОП (1975–1985р.). Це описано в монографії «Зв'язок різномовних модулів в ОС ЄС» (М.: 1982, Фінанси і статистика, 127с.). Там же дано опис мови інтерфейсу і бібліотеки міжмовного інтерфейсу (з 64 функцій), які використовувалися для генерації між модульних посередників. Ця частина системи сприяла скороченню обсягу робіт при зборці різномовних програм через інструментарій генерації посередників.
Інтерфейс доповідався на міжнародної конференції «Інтерфейс СЄВ» (1987) [30] і колектив розробників (Коваль Г.І., Коротун Т.М., Лавріщева К.М.) отримав почесну грамоту від організатора цієї конференції ДКНТІ СРСР.
Набагато пізніше в 1985–90 роках з'явилися зарубіжні мови опису інтерфейсів: API, IDL, SIDL та ін. Вони використовуються і тепер при створенні нових ПС і СПС з готових програм, компонентів, КПВ та сервісів.
Мова опису інтерфейсів IDL
Ця мова створено в рамках об’єктна-орієнтованого проекта CORBA (1992–1994). Вона призначена для опису інтерфейсів об'єктів, включаючи опис типи даних, параметрів об'єктів, які передаються в повідомлення іншим об'єктам от клієнта до серверу і зворотно (stub-клієнта і skeleton-серверу), а методи програмних об’єктів описуються в ЯП (С++, JAVA, PASCAL і ін.).
Опис інтерфейсів починається з ключового слова interface, за яким слідує ідентифікатор (ім'я інтерфейсної програми), створюючи разом заголовок, і тіло, що містить опис типів параметрів для звернення до об'єкту. Приклад опису заголовка опису інтерфейсу:
interface { ... }
interface B { ... }
interface С: B, { ... }.
Тіло інтерфейсу містить опис: типів даних (type dcl), констант (const dcl), виняткових ситуацій (except dcl), атрибутів параметрів (attr dcl), операцій (op dcl).
Опис типів даних починається ключовим словом typedef, за яким слідує базовий або конструйований тип і його ідентифікатор. Як константи може бути деяке значення типа даного або вираз, складений з констант. Типи констант можуть бути: integer, boolean, string, float, char і ін.
Опис операцій op dcl включає: атрибути операції, тип результату, найменування операції інтерфейсу, список параметрів (від нуля і більш) і ін.
Атрибути параметрів можуть починатися наступними службовими словами:
in – при відсиланні параметра від клієнта до серверу;
out – при відправці результатів від серверу до клієнта;
inout – при передачі параметрів в обидва напрями (від клієнта до серверу і від серверу до клієнта).
Опис інтерфейсу може успадковуватися іншим об'єктом, тоді такий опис інтерфейсу стає базовим, приклад наведений нижче:
const long l=2
interface {
void f (in float s [l]);
}
interface B {
const long l=3
}
interface З: B { }.
В ньому інтерфейс З використовує інтерфейс B і А і їх типів даних, які по відношенню до З – глобальні. Імена операцій можуть використовуватися під час виконання інтерфейсного посередника (Skeleton) для динамічного виклику інтерфейсу, приклад наведений нижче:
interface Vlist {
status add item (
in Identifier item name
in type Code item type
in void * value
in long value Len
in Flags item flags
);
status free ( );
status free memory( );
status get count (
out long count);
};
Опис модуля в мові IDL починається з ключового слова module, за яким слідує ім'я модуля і опис його тіла.
Типи даних в мові IDL дозволяє описувати типи даних, які задають параметри, передані від об'єкту до об'єкту, і підрозділяються на базові, складні і конструйовані. До базових типів відносяться фундаментальні типи даних:
16– і 32–бітові (короткі і довгі) із знаком і без знака двокомпонентні цілі;
32– і 64–бітові числа з плаваючою комою, що відповідає стандарту IEEE;
символьні (symbol);
8–бітовий непрозорий тип даних, що забезпечує перетворення даних у момент пересилки між об'єктами;
булеві (true, false);
рядок, який складається з масиву однакових довжин символів, допустимих під час виконання;
перераховуваний тип, що включає впорядковану послідовність ідентифікаторів;
довільний тип any, який представляє собою будь-який базовий або конструйований тип даних;
логічний тип boolean;
осtet – спеціальний 8–розрядний базовий тип даних, який не вимагає того, що перекодував при перенесенні з однієї платформи на іншу.
Конструйовані складні типи створюються з базових типів і включають:
– структуру (struct), що складається з сукупності різнорідних базових елементів;
– об'єднання (union), що містить дискримінатор, за яким розташовується відповідний тип і значення;
– послідовність (sequence), що є масивом, компоненти якого мають змінну довжину і однаковий тип;
– масив (array), що складається з компонентів фіксованої довжини однакового типу;
– інтерфейс (interface), що специфікує операції, які клієнт може послати в запиті.
Тип struct аналогічний мові С++, типи sequence і array – масиви містять елементи однакового типу змінної і фіксованої довжини відповідно. Тип union семантичний відповідає union в мові С++ і має додатково дескриптор варіантів. Кожному типу даних відповідає значення, яке задається в запиті клієнта або об'єкту, що відправляє відповідь на запит.