
- •Перелік термінів та позначень
- •Передмова
- •Частина 1. Початок програмування в срср. Витоки розвитку
- •1.1. Поява і розвиток технології програмування (1952–2012)
- •1.2. Формування технологічних напрямів (1965–1975)
- •1.3. Становленья технології програмування (1975–1982)
- •1.4. Розвиток інтерфейсу в технології програмування (1976–1992)
- •1.5. Розвиток об’єктної технології програмування (1992–2002)
- •1.6. Індустріальні основи технології програмування (2002–2012)
- •1.7. Навчання тп у кну Тараса Шевченко (1965–2012) та філії мфті (2000–2012)
- •Контрольні питання і завдання до частини 1
- •Список літератури до частини 1
- •Частина 2. Парадигми технології програмування
- •2.1. Модульне програмування та збиральний підхід
- •2.1.1. Інтерфейс в програмуванні
- •2.1.2. Зборка модулів по а.П.Єршову
- •2.1.3. Метод зборки готових програмних елементів
- •2.1.4. Формальне подання методу збирання різномовних модулів
- •2.2. Парадигма об’єктно-орієнтованого програмування
- •2.2.1. Базові концепції ооп
- •2.2.2. Чотирьох рівневе проектування ом
- •2.2.3. Концепції об’єктного аналізу
- •2.2.4. Функції, алгебра та операції об’єктного аналізу
- •2.2.5. Моделювання моделі ПрО
- •2.2.6. Опис параметрів інтерфейсу ом
- •2.3. Парадигма uml-метода моделювання
- •2.3.1 Основні діаграми методу
- •2.3.2. Моделювання поведінки системи
- •2.3.3. Побудова пс засобами uml
- •2.4. Парадигма компонентного програмування
- •2.4.1. Теоретичні аспекти компонентного програмування
- •2.4.2. Моделі компонентного програмування
- •2.4.3. Графове подання компонентної моделі ПрО
- •2.4.4. Об’єднання компонентів. Модель середовища
- •2.4.5. Компонентна алгебра
- •2.4.6. Іінструментальні засоби кп
- •2.4.7. Технологія компонентної розробки пс
- •2.4.8. Типізація і класифікація програмних компонентів
- •2.4.9. Жц проектування пс із типових компонентів та кпв
- •Розробка вимог до пс – це формування та опис функціональних, технологічних, організаційних та ін. Властивостей програмної системи, які необхідні чи бажані з точки зору кінцевого користувача.
- •Розгортання рпс. У випадку, коли рпс створюється для конкретного замовника, який є і користувачем, то деякі завдання розгортання виконуються на попередніх етапах. До них, зокрема, відносяться:
- •Супровід рпс компонентній пс характеризується наступними особливостями.
- •2.5. Парадигма аспектно-орієнтованого програмування
- •2.5.1.Основні елементи парадигми аоп
- •2.5.2. Засоби аоп
- •2.5.3. Підтримка аоп впродовж життєвого циклу пс
- •2.5.5. Методичні аспекти аоп
- •2.6. Парадигма генерувального програмування
- •2.6.1 Предметно-орієнтована мова – dsl
- •2.6.2. Простір проблем і рішень ПрО
- •2.6.3. Інженерія ПрО і кпв
- •2.7. Сервісно-орієнтоване програмування
- •2.7.1 Базові понятті сервісу Інтернет
- •2.7.2. Сервіси wcf мs.Net з контрактами
- •2.8. Парадигми теоретичного програмування
- •2.8.1 Алгебраїчне та інсерційне програмування
- •2.8.2. Реалізація агентних програм
- •2.8.3. Експлікативне, номінативне програмування
- •2.8.4. Алгоритмічні алгебри
- •Контрольні питання і завдання до частини 2
- •Список літератури до частини 2
- •Частина 3. Моделі і засоби проектування предметних областей
- •3.1. Моделі проектування ПрО предметних областей
- •3.1.1. Концептуальні моделі пс, спс за компонентами
- •3.1.2. Моделі взаємозв’язку об’єктів
- •3.1.3. Модель інтеграції (зборка) компонентів
- •3.1.4. Тестування прикладних і інтерфейсних об'єктів
- •3.1.5. Моделі взаємодії і варіабельності пс для організації обчислень
- •3.1.6. Підхід до виконання пс в сучасних розподілених середовищах
- •3.2. Онтологічний підхід до подання знань про проблемні області
- •3.2.1. Онтологічне моделювання проблемної області
- •3.2.2. Мовний опис онтології домену чи спс
- •3.2.3. Підхід до реалізація онтології ПрО
- •3.3. Типи даних та засоби їх генерації для використання в збиральному прогрмуванні
- •3.3.1. Проблема забезпечення сумісності типів даних при зборки кпв
- •3.3.2. Аксіоматика простих типів даних
- •3.3.3. Аксіоматика структурних і складних типів даних. Структурні типи даних.
- •3.3.4. Семантичні аспекти взаємодії різнорідних програм
- •3.3.5. Характеристика типів даних для зборки програм
- •3.3.6. Фундаментальні і загальні типи даних
- •3.3.6. Баові поняття стандарту з типів даних
- •3.3.7. Перебудова загальних типів даних до фундаментальних для мп
- •3.4. Підходи і методи доказу програм
- •3.4.1. Мови специфікації програм –vdm, raise, Concept
- •3.4.2. Концепторна мова специфікації
- •3.4.3. Методи доведення правильності програм
- •3.4.4. Модель доказу програми за твердженнями
- •З.5. Проектування пс засобами жц з реалізації доменів
- •3.4.1. За загальна характеристика стандарту жц iso/iec 12207:2002
- •3.4.2. Формування конкретних моделей життєвого циклу
- •3.4.3. Підходи до моделювання ПрО мовними засобами dsl
- •3.6. Модель якості пс
- •3.6.1. Структура моделі якості
- •3.6.2. Модель витрат сосомо Боєма
- •3.6.3. Інтегрована модель витрат на спс
- •Контрольні питання і завдання до частини 3
- •Список літератури до частини 3
- •Частина 4. Методи індустрії виробицтва програм і систем
- •4.1. Загальні основи методології виробництва пс і спс
- •4.1.1. Моделі взаємодії компонентів у пс
- •4.1.2 Методологічні аспекти виробництва спс з готових ресурсів
- •4.2. Мова опису моделей взаємодії на основі xml
- •4.2.1 Подання та обмін даними в компонентних моделях
- •4.2.3 Модель конфігурації компонентів на основі xml
- •4.3. Графове подання пс і спс
- •4.3.1 Графове визначення моделі взаємодії об'єктів
- •4.3.2 Типи зв’язків об’єктів у графової моделі ПрО
- •4.4. Розробка методів побудови проблемно-орієнтованих технологій
- •4.4.1. Аналіз динаміки розвитку фабрик програм
- •4.3.2. Базисні ресурси фабрики програм
- •4.5. Загальні лінії виробництва програм з кпв
- •4.4.1. М етодологія побудови тл
- •4.4.2. Нові дисципліни індустрії наукового совтвера
- •4.4.3. Новітні засоби Grid і Cloud для обчислення задач e–sciences
- •4.4.4. Сучасні системи побудови рпс з сервісних ресурсів
- •4.4.5. Методологія розроблення тл
- •4.4.6. Принципи проектування іс
- •4.5. Методи при оцінюванні економічних характеристик проектів
- •4.5.2. Формальний апарат експертно-аналітичного оцінювання об’єктів і процесів у спс
- •4.5.3. Методи оцінки розміру
- •4.6. Створення Windows застосувань
- •4.6.1. Створення нової програми.
- •4.6.2. Властивості і дизайн програм
- •4.6.3. Компіляція програм
- •2.5. Запуск застосунка
- •4.6.4. Розширення функціональності програм
- •4.7. Інженерії тестування програмних систем
- •4.7.1. Основні поняття інженерії тестування
- •4.7.2 Становлення інженерії тестування
- •4.7.3. Методи тестування. Метрики і критерії
- •4.7.4. Інструменти тестування та оцінювання
- •4.7.5. Тестування веб-застосувань
- •Контрольні питання і завдання до частини 4
- •Список літератури до частини 4
- •5.2. Фабрика програм в кну
- •5.2.3. Створення фабрики студентів
- •5.2.4. Лінії продуктів фабрики на головної сторінки
- •5.2.5. Принципи роботи з репозиторієм програм і артефактів
- •5.2.6. Навчання дисципліні “Програмна інженерія” на фабрики
- •5.3. Репозиторій кпв
- •5.3.1. Загальний опис репозиторію
- •5.3.2. Технологія обслуговування репозиторію кпв
- •5.4. Розробка кпв
- •5.4.1. Опис моделей кпв, інтерфейсу і операцій розробки кпв
- •5.4.2. Реалізація побудови компонентної системи
- •5.4.3. Процеси технології оброблення кпв
- •5.4.4. Зборка різномовних програм у середовищі Visual Studio
- •5.5. Конфігурація кпв
- •5.5.1. Конфігурування кпв з урахуванням варіабельності
- •5.5.2. Опис прикладу використання конфігуратору програм
- •5.6. Генерація систем мовою dsl
- •5.6.1. Лінія опису та генерації доменів dsl
- •5.6.2. Опис життєвого циклу пз та його реалізації на мові dsl
- •2.7. Онтологія – обчислювальна геометрія
- •5.7.1. Онтологія домену – Обчислювальна геометрія
- •5.7.3. Опис моделі онтології ПрО «Обчислювальна геометрія»
- •5.7.4. Опис програми домену «Обчислювальна геометрія» мовою owl
- •5.8. Оцінка якості пс
- •5.8.2. Оцінка витрат на продукт
- •5.8.3. Опис модуля прогнозування трудовитрат на розробку пс
- •5.8.4. Приклад оцінювання затрат на розробку пс ас
- •5.9.1. Опис веб-технології Java ee
- •5.9.3. Приклад взаємодії Java і ms.Net через веб-сервіси
- •5.9.4. Інструкція по використанню графічного інтерфейсу прикладу
- •5.10. Генерація тд
- •5.10.1. Відображення типів даних у середовищі ітк
- •5.10.2. Система генерації загальних типів даних до фундаментальних
- •5.11. Інструментальні засоби сайта ітк
- •5. 12. Розділ сайта «Технологія навчання»
- •Контрольні питання і завдання до частини 5
- •Список літератури до частини 5
- •Післямова
- •Додаток 1. Парадигма структурного програмування
- •Додаток 2. Приклад створення служб wcf у ms Visual Studio 2010
- •Додаток 3. Онтологічний підхід з подання тестування кпв та пс
- •Додаток 4. Оцінка застосування метода сосомо на конкретних даних
- •Додаток 5. Програма курсу «Технологія програмування іс»
5.4.2. Реалізація побудови компонентної системи
Компонентна система – це набір компонентів, що вирішують деякі задачі предметної області. Побудови такої системи виконується за процесами ЖЦ [3].
Аналіз предметної області для декомпозиції на підсистеми і відокремлення окремих функцій майбутній системи для їх подання окремими компонентами або пошук готових за такими функціями.
Пошук, вибір КПВ і розроблення нових компонентів, виходячи із системи класифікації компонентів, формалізоване визначення специфікацій інтерфейсів, функціональності та анотування і розміщення в репозиторії системи або в системах Інтернету.
3. Розроблення вимог (Requirements) до ПС – це формування й опис функціональних, не функціональних і інших властивостей ПС.
4. Аналіз поведінки (Behavioral Analysis) ПС полягає у визначенні функцій системи, деталей проектування і методів їхнього виконання.
5. Специфікація інтерфейсів і взаємодій компонентів (Interface and Interaction Specification) віддзеркалює розподіл параметрів компонентів для завдання інтерфейсів і взаємодії компонентів через потоки дій або робіт (workflow).
6. Інтеграція набору компонентів і КПВ (Application Assembly and Component Reuse) у єдине середовище ґрунтується на підборі й адаптації КПВ, визначенні сукупності правил, умов інтеграції (зборки) і побудові конфігурації системи.
7. Тестування компонентів (Components Testing) ґрунтується на методах верифікації і тестування для перевірки правильності як окремих компонентів і КПВ, так і інтегрованої з компонентів програмної системи.
8. Розгортання (System Deployment) містить у собі оптимізацію плану компонентної конфігурації з урахуванням середовища, розгортання окремих компонентів і створення цільової компонентної конфігурації для функціонування ПС.
9. Супровід ПС (System Support and Maintenance) складається з аналізу помилок і відмов при функціонуванні ПС, пошуку і виправлення помилок, повторного її тестування й адаптації нових компонентів до вимог і умов інтегрованого середовища.
5.4.3. Процеси технології оброблення кпв
Процесами оброблення КПВ є:
– опису КПВ мовами програмування;
– специфікації інтерфейсів КПВ (IDL, XML, Icontract, SIDL…);
– інженерія розроблення доменів, сімейств програм і систем – СПС;
– зборки компонентів із КПВ готових програм і систем;
За допомогою процесів і операцій зборки створюються різні структури програм. Дамо характеристику типів компонентних структур.
Компонент повторного використання (КПВ) – це готовий компонент, елементи оформлених знань (проектні рішення, функції, шаблони й ін.), що використовуються у ході розроблення не тільки самими розробниками, а й іншими користувачами шляхом адаптації їх до нової ПС, що спрощує і скорочує терміни її розробки.
Розширенням поняття компонента є шаблон (паттерн) – абстракція, що містить у собі опис взаємодії сукупності об'єктів у загальній кооперативній діяльності, для якої визначені ролі учасників і їхня відповідальність. Шаблон є повторюваною частиною програмного елемента або схемою вирішення проблеми.
Каркас являє собою високорівневу абстракцію проекту ПС, у якій функції компонентів відділені від задач керування ними. Каркас поєднує множину взаємодіючих між собою об'єктів у деяке інтегроване середовище для досягнення певної кінцевої мети. Залежно від спеціалізації каркас називають «білою скринькою» або «чорною скринькою».
Каркас типу «біла скринька» містить у собі абстрактні класи для зображення об'єктів і їх інтерфейсів. При реалізації ці класи трансформуються в конкретні класи з указівкою відповідних методів реалізації. Використання такого типу каркаса є характерним для OOП.
Для каркаса типу «чорна скринька» у його видиму частину виносять точки, що дозволяють змінювати входи і виходи.
Компонентне середовище – розширення класичної моделі клієнт–сервер з урахуванням специфіки побудови і функціонування програмних компонентів, а також результатів практичних реалізацій і їхньої апробації. Основа компонентного середовища – множина серверів компонентів (часто їх називають сервери застосувань – application servers). Усередині сервера розгортаються компоненти-контейнери. Для кожного сервера може існувати довільна кількість контейнерів.
Контейнер – це оболонка, усередині якої реалізується функціональність компонента. Взаємодія контейнера із сервером строго регламентована і здійснюється через стандартизовані інтерфейси. Контейнер керує породжуваними компонентами і їхніми екземплярами з відповідною функціональністю. У загальному випадку усередині нього може існувати довільна кількість екземплярів-реалізацій, кожна з яких має унікальний ідентифікатор.
Екземпляри компонентів контейнера можуть взаємодіяти за допомогою системних сервісів, розміщених в інших компонентах. Самі компоненти можуть розміщатися як усередині одного сервера, так і в різних серверах для різних платформ. Така взаємодія забезпечується унікальними іменами компонентів і екземплярів, а також регламентована інтерфейсами і системними функціями. Інтерфейс відображає перелік сервісів, вхідні та вихідні параметри сервісів та їхні типи, перед – і пост умови функціонування компонента, а також перелік інших компонентів, сервіси яких потрібні для здійснення своїх сервісів.
До компонентів середовища відносяться:
– сервери компонентів;
– контейнери компонентів;
– реалізації функцій, подані як екземпляри усередині контейнерів;
– реалізація компонентних моделей, об'єктів, що задовольняють установку і конфігурування окремих компонентів для деякої комп'ютерної платформи;
– клієнтські компоненти і інтерфейси, що забезпечують кінцевого користувача, реалізовані у вигляді різних типів клієнтів (веб-клієнти, повноцінні реалізації графічного інтерфейсу і т.д.);
– компонентне застосування, як сукупність компонентів.
Семантика інтерфейсу компонента може бути представлена за допомогою посередників або контрактів. Вони визначають зовнішні обмеження і підтримують інваріант, який містить у собі правила встановлення взаємозв’язків властивостей компонента або умови його життєздатності. Крім того, для кожної операції компонента контракт може визначати обмеження, що повинні бути враховані клієнтом перед викликом операції (передумова), і посту мови перевірки правильності функціонування компонента після завершення операції. Перед – і пост умова визначають специфікацію поведінки компонента і залежать від стану компонента, а також інтерфейсу і зв'язаним з ним набором інваріантів. Контракти й інтерфейс зв'язані між собою, але їхні сутності різні. Інтерфейс являє собою колекцію операцій або функціональних властивостей специфікації сервісів, що підтримує компонент. Контракт задає опис поведінки компонента, націлений на взаємодію з іншими компонентами і відбиває семантику функціональних властивостей компонента.
До архітектура компонентної системи віднесені:
– сервери компонентів;
– контейнери компонентів;
– реалізації функцій, подані як екземпляри усередині контейнерів;
– реалізація компонентних моделей, об'єктів, що задовольняють установку і конфігурування окремих компонентів для деякої комп'ютерної платформи;
– клієнтські компоненти і інтерфейси, що забезпечують кінцевого користувача, реалізовані у вигляді різних типів клієнтів (веб-клієнти, повноцінні реалізації графічного інтерфейсу і т.д.);
– компонентне застосування, як сукупність компонентів й КПВ.
Кожний з типів об'єктів може реалізовуватися окремо, оскільки для кожного з них існують свої специфікації і вимоги, а також правила взаємодії з іншими елементами середовища компонентного програмування. Всі елементи разом узяті утворюють ланцюжок, що визначає порядок реалізації компонентної ПС. Кожен тип елементів може реалізовуватися окремим розробником і відповідно до цього визначається його роль у процесі створення компонентної системи.
Інтерфейс компонента може бути визначений у вигляді специфікації точок доступу до компонента, що обумовлюють його варіантність, і використовуючи які клієнт одержує сервіс у клієнт-серверному середовищі. Виходячи з того, що інтерфейс не надає реалізацію операцій, можна змінювати реалізацію без зміни інтерфейсу і, таким чином, покращувати функціональні властивості компонента без перебудови ПС у цілому, а також додавати нові інтерфейси (і реалізацію) без зміни існуючої реалізації усієї ПС.
Композиція компонентів може бути таких типів: компонент з компонентом зв’язані через інтерфейс на рівні застосування; каркас з компонентом зв’язані через інтерфейси на системному рівні; компонент з каркасом взаємодіють через інтерфейси на сервісному рівні; каркас з каркасом взаємодіють через інтерфейси на мережному рівні.
Компоненти запам'ятовуються в репозиторії компонентів, а їхні інтерфейси – в репозиторії інтерфейсів..
Приклад наведено за адресою сайта КНУ http://www.programsfactory.univ.kiev.ua/