
- •Содержание
- •Список обозначений и сокращений
- •1.Введение
- •1.1.Цель и задачи дисциплины
- •1.2.Распределение часов по видам учебных занятий и виды отчетности
- •1.3.Основная литература
- •1.4.Дополнительная литература
- •1.5.Методические разработки
- •1.6.Литература к курсовому проектированию
- •2.Прочность сварных конструкций
- •2.1.Общие сведения Классификация сварных конструкций
- •2.1.1.Прочность
- •Расчетная и конструкционная прочность
- •2.1.2.Жесткость
- •2.1.3.Устойчивость
- •2.2.Расчет строительных конструкций по методу «Предельных состояний»
- •Метод расчета по предельным состояниям
- •2.3.Обозначение на чертежах швов сварных соединений
- •3.Материалы сварных конструкций
- •3.1.Виды разрушающих испытаний. Механические характеристики сталей и сплавов
- •3.1.1.Испытания на растяжение
- •3.1.2.Измерение твердости
- •3.1.3.Испытания на ударный изгиб
- •3.2.Правила нанесения показателей свойств материалов.
- •3.3.Стали. Классификация. Маркировка
- •Маркировка.
- •3.4.Углеродистые стали
- •3.5.Низколегированные стали
- •3.6.Цветные металлы
- •3.6.1.Алюминевые сплавы
- •3.6.2.Титановые сплавы
- •3.7.Сварочные материалы.
- •4.Строение сварного соединения. Влияние неоднородности свойств на прочность сварной конструкции
- •4.1.1.Растяжение поперек шва
- •4.1.2.Растяжение вдоль шва.
- •4.1.3.Другие схемы нагружения.
- •4.2.Механические свойства металла сварных соединений.
- •5.Концентрация напряжений и деформаций в сварных соединениях
- •5.1.Общие положения
- •5.2.Распределение напряжений в стыковых швах
- •5.3.Распределение напряжений в лобовых швах
- •5.4.Распределение напряжений в соединениях с фланговыми швами
- •5.5.Распределение напряжений в комбинированных соединениях с лобовыми и фланговыми швами
- •5.6.Распределение усилий в соединениях, полученных контактной сваркой
- •5.7.Концентрация напряжений в паяных швах
- •6.Сопротивление сварных соединений усталости
- •6.1.Прочность основного металла при переменных (циклических) нагрузках
- •6.3.Влияние характеристики цикла r на прочность при переменных нагрузках
- •6.4.Коэффициенты концентрации и их влияние на усталостную прочность
- •6.5.Влияние частоты циклов нагружения на усталостную прочность
- •6.6.Сопротивление усталости сварных соединений, выполненных дуговой сваркой
- •6.7.Сопротивление усталости сварных соединений, выполненных контактной сваркой
- •6.8.Влияние термообработки и остаточных напряжений на сопротивления усталости сварных соединений
- •7.Стержневые сварные конструкции
- •7.1.Балки
- •7.1.1.Расчет жесткости и прочности
- •7.1.2.Общая устойчивость
- •7.1.3.Местная устойчивость
- •7.1.4.Работа на кручение
- •7.1.5.Сварные соединения
- •7.2.Фермы
- •7.2.1.Геометрическая неизменяемость и статическая определимость ферм
- •7.2.2.Классификация ферм
- •7.2.3.Соединения ферм в геометрически пространственную неизменяемую систему
- •7.2.4.Определение усилий стержней фермы аналитическим методом
- •8.Сведения из строительной механики
- •8.1.Определение расчетных усилий в балках методом линий влияния
- •8.2.Линии влияния усилий стержневых ферм
- •8.3.Определение усилий в стержнях фермы при нахождении груза на поясе
- •9.Сварочные напряжения и деформации
- •9.1.Образование термических напряжений и деформаций Свободный и стесненный нагрев стержня
- •Нагрев тонкой пластины уложенным по середине проводником тока.
- •Для движущегося источника нагрева
- •9.2.Свойства металлов при высоких температурах. Распределение температур при сварке
- •9.3.Образование деформаций. Напряжений и перемещений при сварке
- •9.4.Сварочные напряжения и деформации в различных материалах
- •9.5.Поперечная усадка
- •9.6.Неравномерные по толщине пластические деформации
- •9.7.Сдвиговые деформации
- •9.8.Деформации элементов при сварке стыковых соединений с зазором
- •9.9.Деформации в соединениях с кольцевыми швами
- •Толстостенные оболочки
- •9.10.Деформации и напряжения в соединениях с круговыми швами
- •9.11.Деформации в конструкциях балочного типа
- •9.12.Примеры вредного влияния сварочных напряжений, деформаций и перемещений
- •9.13.Методы уменьшения сварочных напряжений, деформаций и перемещений Рациональные конструирование.
- •9.14.Способы снижения сварочных деформаций при рдс
- •10.Хрупкие разрушения сварных конструкций
- •11.Прочность при высоких температурах
- •11.1.1.Жаропрочные стали и сплавы
- •12.Коррозионная стойкость сварных соединений
- •13.Сварные листовые конструкции
- •13.1.Расчет на прочность листовых оболочковых конструкций по безмоментной теории Лапласа
- •13.2.Гипотеза Хубера-Мизеса
- •14.Сварные детали машин
5.Концентрация напряжений и деформаций в сварных соединениях
5.1.Общие положения
Под концентрацией напряжений понимают резкое местное увеличение напряжений в местах изменения формы деталей (различные проточки, резьба, отверстия и т.д.). В сварных соединениях концентрацию напряжений вызывают нахлестки, усиления и т.д., а также технологические дефекты (поры, шлаковые включения, особенно трещины и непровары) Влияние концентрации напряжений на прочность конструкций, в том числе и сварных исключительно велико. Это основной фактор снижающий прочность конструкции.
Рассмотрим предварительно распределение напряжений в пределах упругих деформаций на полосе шириной а, ослабленной круглым небольшим отверстием диаметром d (Error: Reference source not found, а).
При у=d/2, σ’=3σ, т. е. теоретический коэффициент концентрации КТ=σ’/σ=3. При y=2d, σ'=1,04σ, т. е. приближается к единице.
Рис. 5.37 Концентрация напряжений: а — в полосе е круглым отверстием; б — в полосе с эллиптическим отверстием; в — распределение σ в упругой стадии, г — распределение σ в пластической стадии нагружения.
В случае эллиптического отверстия (Error: Reference source not found б) теоретический коэффициент концентрации напряжений в пределах упругих деформаций
|
( 2.0)
|
При с→0 КT→∞. Это решение не точно, так как при малых значениях деформаций, вызванные внешними силами, оказывают существенное влияние на форму отверстия и формула Error: Reference source not found не выполняется.
Указанные местные напряжения в зоне концентрации не опасны для прочности в конструкциях из пластичных металлов при статических нагрузках. Поясним это положение.
Диаграммы растяжения пластичного металла нередко схематизируются. Их приближенно заменяют двумя прямыми: наклонной, выражающей зависимость напряжения от деформаций в упругой области, и горизонтальной. Горизонтальная прямая показывает, что при ε→εТ деформация протекает пластически, без увеличения нагрузки, приложенной к испытуемому элементу.
Вернемся к рассмотрению эпюры напряженной полосы, ослабленной отверстием (Error: Reference source not found, в). Напряженное состояние в сечении А—А близко к одноосному. Допустим, что около отверстия напряжение достигло значения σТ,. Это соответствует деформации εТ,. При увеличении нагрузки деформации возросли, но напряжения в зоне, где ε> εТ (Error: Reference source not found, г), как это следует из схематизированной диаграммы растяжения, остаются равными σТ. Эпюра станет изменять свою форму и выравниваться. Приближенно можно принять, что она примет очертание, близкое к прямоугольному (Error: Reference source not found, д), что и было положено в основу расчета прочности по элементарным формулам.
Сглаживание эпюры напряжений в пластической стадии, рассмотренное на конкретном примере, является закономерным процессом, имеющим место во многих элементах конструкций из пластичных сталей (низкоуглеродистые и низколегированные) при одноосных напряженных состояниях (а иногда и многоосных). Однако концентрация напряжений существенно снижает прочность при переменных нагрузках; в случае ограниченной пластичности металла и при статических нагрузках.
Концентрацию напряжений в сварных конструкциях вызывают следующие причины: технологические дефекты шва — газовые пузыри, шлаковые включения и особенно трещины и непровары. Возле этих дефектов при нагружении силовые линии искривляются, в результате чего образуется концентрация напряжений. Коэффициенты концентрации напряжений около указанных дефектов значительны, но при их небольшом числе и размерах прочность сварных соединений остается удовлетворительной. В плотных однородных стыковых швах концентрация напряжений может быть сведена до минимума.