
- •.2. Что такое информация?
- •1.3. В каком виде существует информация?
- •1.4. Как передаётся информация?
- •1.5. Как измеряется количество информации?
- •1.6. Что можно делать с информацией?
- •1.7. Какими свойствами обладает информация?
- •1.8. Что такое обработка информации?
- •1.9. Что такое информационные ресурсы и информационные технологии?
- •1.10. Что понимают под информатизацией общества?
- •1.11. Вопросы для самоконтроля
- •1.12. Упражнения
- •Глава 2. Общие принципы организации и работы компьютеров
- •2.1. Что такое компьютер?
- •2.2. Как устроен компьютер?
- •2.3. На каких принципах построены компьютеры?
- •1. Принцип программного управления. Из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.
- •3. Принцип адресности. Структурно основная память состоит из перенумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка.
- •2.4. Что такое команда?
- •2.5. Как выполняется команда?
- •2.6. Что такое архитектура и структура компьютера?
- •2.7. Что такое центральный процессор?
- •2.8. Как устроена память?
- •2.9. Какие устройства образуют внутреннюю память?
- •2.10. Какие устройства образуют внешнюю память?
- •Накопители на гибких магнитных дисках
- •Накопители на жестких магнитных дисках
- •Накопители на компакт-дисках
- •Записывающие оптические и магнитооптические накопители
- •Накопители на магнитной ленте (стримеры) и накопители на сменных дисках
- •2.11. Что такое аудиоадаптер?
- •2.12. Что такое видеоадаптер и графический акселератор?
- •2.13. Что такое клавиатура?
- •2.14. Что такое видеосистема компьютера?
- •2.15. Что такое принтер, плоттер, сканер?
- •2.16. Что такое модем и факс-модем?
- •2.17. Что такое манипуляторы?
- •2.18. Как устроен компьютер?
- •2.19. Какие основные блоки входят в состав компьютера?
- •2.20. Что собой представляет системная плата?
- •2.21. Как организуется межкомпьютерная связь?
- •2.22. Что такое компьютерная сеть?
- •2.23. Как соединяются между собой устройства сети?
- •2.24. Как классифицируют компьютерные сети по степени географического распространения?
- •2.25. Как соединяются между собой локальные сети?
- •2.26. Как работают беспроводные сети?
- •2.27. Что такое сеть Интернет и как она работает?
- •Как связываются между собой сети в Интернет?
- •Основные сервисы системы Интернет.
- •2.28. Что такое мультимедиа и мультимедиа-компьютер?
- •2.29. Вопросы для самоконтроля
- •Глава 3. Классификация компьютеров
- •3.1. По каким критериям классифицируют компьютеры?
- •3.2. На чем основана классификация по поколениям?
- •3.3. Краткая историческая справка
- •3.4. Какие компьютеры относятcя в первому поколению?
- •3.5. Какие компьютеры относятся ко второму поколению?
- •3.6. В чем особенности компьютеров третьего поколения?
- •3.8. Какими должны быть компьютеры пятого поколения?
- •3.9. На какие типы делятся компьютеры по условиям эксплуатации?
- •3.10. На какие типы делятся компьютеры по производительности и характеру использования?
- •3.11. Какие существуют типы портативных компьютеров?
- •3.12. Вопросы для самоконтроля
- •Глава 4. Арифметические основы компьютеров
- •4.1. Что такое система счисления?
- •4.2. Как порождаются целые числа в позиционных системах счисления?
- •4.3. Какие системы счисления используют специалисты для общения с компьютером?
- •4.4. Почему люди пользуются десятичной системой, а компьютеры — двоичной?
- •4.5. Почему в компьютерах используются также восьмеричная и шестнадцатеричная системы счисления?
- •4.6. Как перевести целое число из десятичной системы в любую другую позиционную систему счисления?
- •4.7. Как пеpевести пpавильную десятичную дpобь в любую другую позиционную систему счисления?
- •4.8. Как пеpевести число из двоичной (восьмеpичной, шестнадцатеpичной) системы в десятичную?
- •4.9. Сводная таблица переводов целых чисел из одной системы счисления в другую
- •Сводная таблица переводов целых чисел
- •4.10. Как производятся арифметические операции в позиционных системах счисления?
- •Сложение
- •Вычитание
- •Умножение
- •Деление
- •4.11. Как представляются в компьютере целые числа?
- •Диапазоны значений целых чисел без знака
- •Диапазоны значений целых чисел со знаком
- •4.12. Как компьютер выполняет арифметические действия над целыми числами? Сложение и вычитание
- •Умножение и деление
- •4.13. Как представляются в компьютере вещественные числа?
- •4.14. Как компьютер выполняет арифметические действия над нормализованными числами?
- •Сложение и вычитание
- •Умножение
- •Деление
- •4.15. Упражнения
- •Глава 5. Логические основы компьютеров
- •5.1. Что такое алгебра логики?
- •5.2. Что такое логическая формула?
- •5.3. Какая связь между алгеброй логики и двоичным кодированием?
- •5.4. В каком виде записываются в памяти компьютера и в регистрах процессора данные и команды?
- •5.5. Что такое логический элемент компьютера?
- •5.6. Что такое схемы и, или, не, и-не, или-не?
- •5.7. Что такое триггер?
- •5.8. Что такое сумматор?
- •5.9. Какие основные законы выполняются в алгебре логики?
- •Основные законы алгебры логики
- •5.10. Как составить таблицу истинности?
- •5.11. Как упростить логическую формулу?
- •5.12. Что такое переключательная схема?
- •5.13. Как решать логические задачи?
- •I. Решение логических задач средствами алгебры логики
- •II. Решение логических задач табличным способом
- •III. Решение логических задач с помощью рассуждений
- •5.14. Упражнения
- •Глава 6. Программное обеспечение компьютеров
- •6.1. Что такое программное обеспечение?
- •6.2. Как классифицируется программное обеспечение?
- •6.3. Какие программы называют прикладными?
- •6.4. Какова роль и назначение системных программ?
- •6.5. Что такое операционная система?
- •6.6. Что такое файловая система ос?
- •6.7. Какова структура операционной системы ms dos?
- •6.8. Что такое программы-оболочки?
- •6.9. Что собой представляют операционные системы Windows nt и Windows 95?
- •6.10. Что такое транслятор, компилятор, интерпретатор?
- •6.11. Что такое системы программирования?
- •6.12. Для чего нужны инструментальные программы?
- •6.13. Что такое текстовый редактор?
- •6.14. Что такое графический редактор?
- •6.15. Каковы возможности систем деловой и научной графики?
- •6.16. Что такое табличный процессор?
- •6.17. Что такое системы управления базами данных?
- •6.18. Что такое библиотеки стандартных подпрограмм?
- •6.19. Что такое пакеты прикладных программ?
- •6.20. Что такое интегрированные пакеты программ?
- •6.21. Что такое органайзеры?
- •6.22. Что такое сетевое программное обеспечение?
- •6.23. Вопросы для самоконтроля.
- •Глава 7. Алгоритмы. Алгоритмизация. Алгоритмические языки
- •7.1. Что такое алгоритм?
- •7.2. Что такое "Исполнитель алгоритма"?
- •7.3. Какими свойствами обладают алгоpитмы?
- •7.4. В какой форме записываются алгоритмы?
- •7.5. Что такое словесный способ записи алгоритмов?
- •7.6. Что такое графический способ записи алгоритмов?
- •7.7. Что такое псевдокод?
- •7.8. Как записываются алгоритмы на школьном алгоритмическом языке? Основные служебные слова
- •Команды школьного ая
- •Пример записи алгоритма на школьном ая
- •7.9. Что такое базовые алгоритмические структуры?
- •Примеры команды если
- •Примеры команд пока и для
- •7.10. Какие циклы называют итерационными?
- •7.11. Что такое вложенные циклы?
- •Пример вложенных циклов для
- •Пример вложенных циклов пока
- •7.12. Чем отличается программный способ записи алгоритмов от других?
- •7.13.Что такое уровень языка программирования?
- •7.14. Какие у машинных языков достоинства и недостатки?
- •7.15. Что такое язык ассемблера?
- •7.16. В чем преимущества алгоритмических языков перед машинными?
- •7.17. Какие компоненты образуют алгоритмический язык?
- •7.18. Какие понятия используют алгоритмические языки?
- •7.19. Что такое стандартная функция?
- •7.20. Как записываются арифметические выражения?
- •Примеры записи арифметических выражений
- •7.21. Как записываются логические выражения?
- •Примеры записи логических выражений, истинных при выполнении указанных условий.
- •7.22. Упражнения
- •Глава 8. Технология подготовки и решения задач с помощью компьютера
5.2. Что такое логическая формула?
С помощью логических переменных и символов логических операций любое высказывание можно формализовать, то есть заменить логической формулой.
Определение логической формулы:
|
В п. 1 определены элементарные формулы; в п. 2 даны правила образования из любых данных формул новых формул.
В качестве примера рассмотрим высказывание “если я куплю яблоки или абрикосы, то приготовлю фруктовый пирог”. Это высказывание формализуется в виде (A v B) C; такая же формула соответствует высказыванию “если Игорь знает английский или японский язык, то он получит место переводчика”.
Как показывает анализ формулы (A v B) C , при определённых сочетаниях значений переменных A, B и C она принимает значение “истина”, а при некоторых других сочетаниях — значение “ложь” (разберите самостоятельно эти случаи). Такие формулы называются выполнимыми.
Некоторые формулы принимают значение “истина” при любых значениях истинности входящих в них переменных. Таковой будет, например, формула А v , соответствующая высказыванию “Этот треугольник прямоугольный или косоугольный”. Эта формула истинна и тогда, когда треугольник прямоугольный, и тогда, когда треугольник не прямоугольный. Такие формулы называются тождественно истинными формулами или тавтологиями. Высказывания, которые формализуются тавтологиями, называются логически истинными высказываниями.
В качестве другого примера рассмотрим формулу А • , которой соответствует, например, высказывание “Катя самая высокая девочка в классе, и в классе есть девочки выше Кати”. Очевидно, что эта формула ложна, так как либо А, либо обязательно ложно. Такие формулы называются тождественно ложными формулами или противоречиями. Высказывания, которые формализуются противоречиями, называются логически ложными высказываниями.
Если две формулы А и В “одновременно”, то есть при одинаковых наборах значений входящих в них переменных, принимают одинаковые значения, то они называются равносильными.
Равносильность двух формул алгебры логики обозначается символом “=” или символом “”. Замена формулы другой, ей равносильной, называется равносильным преобразованием данной формулы.
5.3. Какая связь между алгеброй логики и двоичным кодированием?
Математический аппарат алгебры логики очень удобен для описания того, как функционируют аппаратные средства компьютера, поскольку основной системой счисления в компьютере является двоичная, в которой используются цифры 1 и 0, а значений логических переменных тоже два: “1” и “0”.
Из этого следует два вывода:
одни и те же устройства компьютера могут применяться для обработки и хранения как числовой информации, представленной в двоичной системе счисления, так и логических переменных;
на этапе конструирования аппаратных средств алгебра логики позволяет значительно упростить логические функции, описывающие функционирование схем компьютера, и, следовательно, уменьшить число элементарных логических элементов, из десятков тысяч которых состоят основные узлы компьютера.