Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебник Компьютерные сети. Изд.4.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
21.96 Mб
Скачать

Пользовательские мас-адреса

Теперь нам нужно рассмотреть важный вопрос применения пользовательских МАС-адресов. Магистральным коммутаторам сети РВВ знание пользовательских адресов не требуется, так как они передают кадры только на основании комбинации В-М AC/B-VID. А вот поведение пограничных коммутаторов в отношении пользовательских МАС-адресов зависит от типа сервиса.

При отображении кадров сервиса типа E-LINE (то есть «точка-точка») на определенное соединение I-SID пограничные коммутаторы не применяют пользовательские МАС-адреса, так как все кадры, независимо от их адресов назначения, передаются одному и тому же выходному пограничному коммутатору. Например, для сервисов с I-SID 56 и 144 коммутатор ВЕВ1 всегда задействует МАС-адрес коммутатора ВЕВ2 в качестве В-МАС DA при формировании несущего (нового) кадра, который переносит инкапсулированный пользовательский кадр через сеть РВВ.

Однако при отображении кадров сервисов типа E-LAN и E-TREE (то есть «многоточка-многоточка») у входного коммутатора всегда существует несколько выходных пограничных коммутаторов, поддерживающих этот сервис. Например, у входного коммутатора ВЕВ1 при обслуживании кадров сервиса с I-SID 108 есть альтернатива — отправить пришедший кадр коммутатору ВЕВ2 или ВЕВЗ.

Для принятия решения в таких случаях применяются пользовательские МАС-адреса. Пограничные коммутаторы, поддерживающие сервисы типа E-LAN и E-TREE, изучают пользовательские МАС-адреса и посылают кадр выходному коммутатору, связанному с той сетью пользователя, в которой находится МАС-адрес назначения С-МАС DA. Так, в нашем примере коммутатор ВЕВ1 изучает адреса С-МАС SA кадров, поступающих по I-SID 108, чтобы знать, подключены ли узлы с этими адресами к ВЕВ2 или ВЕВЗ. В результате ВЕВ1 создает таблицу продвижения (табл. 21.1).

Таблица 21.1. Таблица продвижения для сервиса I-SID 10B

С-МАС

I-SID

В-МАС

B-VID

С-МАС-1

108

В-МАС-2

1033

С-МАС-2

108

В-МАС-2

1033

С-МАС-3

108

В-МАС-3

1033

С-МАС-4

108

В-МАС-3

1033

108

1033

На основании этой таблицы коммутатор ВЕВ1 по адресу назначения С-МАС выбирает соответствующий адрес выходного пограничного коммутатора и помещает его в формируемый кадр, например, для кадра с адресом назначения С-МАС-2 это будет В-МАС-2. В том же случае, когда пользовательский адрес назначения еще не изучен, коммутатор ВЕВ1 помещает в поле В-МАС широковещательный адрес. Таким же образом обрабатываются кадры с широковещательным пользовательским адресом.

Инжиниринг трафика и отказоустойчивость

Возможности инжиниринга трафика в сетях РВВ ограничены функциональностью протокола STP, который остается и в этом типе сетей основным протоколом, обеспечивающим отказоустойчивость сети при наличии избыточных связей. Этот протокол не дает админи­стратору полного контроля над путями передачи трафика, хотя, как вы знаете из главы 14, некоторые возможности подобного рода у него имеются, так как администратор может влиять на выбор покрывающего дерева за счет назначения приоритетов коммутаторам и их портам. Применение протокола MSTP дает дополнительные возможности устанавливать в сети различные покрывающие деревья для различных виртуальных локальных сетей — это свойство использовано в сети, показанной на рис. 21.13.

Так как кадры протокола STP сети провайдера и сетей клиентов в технологии РВВ изолированы друг от друга, то здесь нет необходимости применять различные групповые адреса для коммутаторов провайдера и клиентов, как это сделано в стандарте РВ. Ограниченные возможности стандарта РВВ в отношении инжиниринга трафика преодо­лены в стандарте РВВ ТЕ, но только для случая двухточечных соединений, то есть для услуг типа E-LINE.