
- •Часть I. Основы сетей передачи данных 25
- •Глава 1. Эволюция компьютерных сетей 26
- •Глава 2. Общие принципы построения сетей 45
- •Глава 3. Коммутация каналов и пакетов 92
- •Глава 4. Архитектура и стандартизация сетей 130
- •Глава 5. Примеры сетей 167
- •Глава 6. Сетевые характеристики 198
- •Глава 7. Методы обеспечения качества обслуживания 227
- •Часть II. Технологии физического уровня 283
- •Глава 8. Линии связи 284
- •Глава 9. Кодирование и мультиплексирование данных 320
- •Глава 10. Беспроводная передача данных 357
- •Глава 11. Первичные сети 389
- •Часть III. Локальные вычислительные сети 441
- •Глава 12. Технологии локальных сетей на разделяемой среде 443
- •Глава 13. Коммутируемые сети Ethernet 507
- •Глава 14. Интеллектуальные функции коммутаторов 565
- •Часть IV. Сети tcp/ip 607
- •Глава 15. Адресация в стеке протоколов tcp/ip 608
- •Глава 16. Протокол межсетевого взаимодействия 652
- •Глава 17. Базовые протоколы tcp/ip 700
- •Глава 18. Дополнительные функции маршрутизаторов ip-сетей 758
- •Часть V. Технологии глобальных сетей 834
- •Глава 19. Транспортные услуги и технологии глобальных сетей 838
- •Глава 20. Технология mpls 885
- •Глава 21. Ethernet операторского класса 921
- •Глава 22. Удаленный доступ 961
- •Глава 23. Сетевые службы 1008
- •Глава 24. Сетевая безопасность 1052
- •От авторов
- •Для кого эта книга
- •Изменения в четвертом издании
- •Структура книги
- •Благодарности
- •Часть I. Основы сетей передачи данных
- •Глава 1. Эволюция компьютерных сетей
- •Два корня компьютерных сетей Вычислительная и телекоммуникационная технологии
- •Системы пакетной обработки
- •Многотерминальные системы — прообраз сети
- •Первые компьютерные сети Первые глобальные сети
- •Первые локальные сети
- •Конвергенция сетей Сближение локальных и глобальных сетей
- •Конвергенция компьютерных и телекоммуникационных сетей
- •Вопросы и задания
- •Глава 2. Общие принципы построения сетей
- •Простейшая сеть из двух компьютеров Совместное использование ресурсов
- •Сетевые интерфейсы
- •Связь компьютера с периферийным устройством
- •Обмен данными между двумя компьютерами
- •Доступ к пу через сеть
- •Сетевое программное обеспечение
- •Сетевые службы и сервисы
- •Сетевая операционная система
- •Сетевые приложения
- •Физическая передача данных по линиям связи
- •Кодирование
- •Характеристики физических каналов
- •Проблемы связи нескольких компьютеров
- •Топология физических связей
- •Адресация узлов сети
- •Коммутация
- •Обобщенная задача коммутации
- •Определение информационных потоков
- •Маршрутизация
- •Продвижение данных
- •Мультиплексирование и демультиплексирование
- •Разделяемая среда передачи данных
- •Типы коммутации
- •Вопросы и задания
- •Глава 3. Коммутация каналов и пакетов
- •Коммутация каналов
- •Элементарный канал
- •Составной канал
- •Неэффективность при передаче пульсирующего трафика
- •Коммутация пакетов
- •Буферизация пакетов
- •Дейтаграммная передача
- •Передача с установлением логического соединения
- •Передача с установлением виртуального канала
- •Сравнение сетей с коммутацией пакетов и каналов
- •Транспортная аналогия для сетей с коммутацией пакетов и каналов
- •Количественное сравнение задержек
- •Ethernet — пример стандартной технологии с коммутацией пакетов
- •Вопросы и задания
- •Глава 4. Архитектура и стандартизация сетей
- •Декомпозиция задачи сетевого взаимодействия
- •Многоуровневый подход
- •Протокол и стек протоколов
- •Модель osi
- •Общая характеристика модели osi
- •Физический уровень
- •Канальный уровень
- •Сетевой уровень
- •Транспортный уровень
- •Сеансовый уровень
- •Уровень представления
- •Прикладной уровень
- •Модель osi и сети с коммутацией каналов
- •Стандартизация сетей
- •Понятие открытой системы
- •Источники стандартов
- •Стандартизация Интернета
- •Стандартные стеки коммуникационных протоколов
- •Стек osi
- •Стек ipx/spx
- •Стек NetBios/smb
- •Стек tcp/ip
- •Соответствие популярных стеков протоколов модели osi
- •Информационные и транспортные услуги
- •Распределение протоколов по элементам сети
- •Вспомогательные протоколы транспортной системы
- •Вопросы и задания
- •Глава 5. Примеры сетей
- •Классификация компьютерных сетей
- •Классификация компьютерных сетей в технологическом аспекте
- •Другие аспекты классификации компьютерных сетей
- •Обобщенная структура телекоммуникационной сети
- •Сеть доступа
- •Магистральная сеть
- •Информационные центры
- •Сети операторов связи
- •Клиенты
- •Инфраструктура
- •Территория покрытия
- •Взаимоотношения между операторами связи различного типа
- •Корпоративные сети
- •Сети отделов
- •Сети зданий и кампусов
- •Сети масштаба предприятия
- •Интернет
- •Уникальность Интернета
- •Структура Интернета
- •Классификация провайдеров Интернета по видам оказываемых услуг
- •Вопросы и задания
- •Глава 6. Сетевые характеристики
- •Типы характеристик Субъективные оценки качества
- •Характеристики и требования к сети
- •Временная шкала
- •Соглашение об уровне обслуживания
- •Производительность
- •Идеальная сеть
- •Статистические оценки характеристик сети
- •Активные и пассивные измерения в сети
- •Характеристики задержек пакетов
- •Характеристики скорости передачи
- •Надежность Характеристики потерь пакетов
- •Доступность и отказоустойчивость
- •Характеристики сети поставщика услуг
- •Расширяемость и масштабируемость
- •Управляемость
- •Совместимость
- •Вопросы и задания
- •Глава 7. Методы обеспечения качества обслуживания
- •Обзор методов обеспечения качества обслуживания
- •Приложения и качество обслуживания
- •Предсказуемость скорости передачи данных
- •Чувствительность трафика к задержкам пакетов
- •Чувствительность трафика к потерям и искажениям пакетов
- •Классы приложений
- •Анализ очередей
- •Модель м/м/1
- •Очереди и различные классы трафика
- •Техника управления очередями
- •Очередь fifo
- •Приоритетное обслуживание
- •Взвешенные очереди
- •Комбинированные алгоритмы обслуживания очередей
- •Механизмы кондиционирования трафика
- •Классификация трафика
- •Профилирование
- •Формирование трафика
- •Обратная связь Назначение
- •Участники обратной связи
- •Информация обратной связи
- •Резервирование ресурсов Резервирование ресурсов и контроль допуска
- •Обеспечение заданного уровня задержек
- •Инжиниринг трафика
- •Недостатки традиционных методов маршрутизации
- •Методы инжиниринга трафика
- •Инжиниринг трафика различных классов
- •Работа в недогруженном режиме
- •Вопросы и задания
- •Часть II. Технологии физического уровня
- •Глава 8. Линии связи
- •Классификация линий связи Первичные сети, линии и каналы связи
- •Физическая среда передачи данных
- •Аппаратура передачи данных
- •Характеристики линий связи Спектральный анализ сигналов на линиях связи
- •Затухание и волновое сопротивление
- •Помехоустойчивость и достоверность
- •Полоса пропускания и пропускная способность
- •Биты и боды
- •Соотношение полосы пропускания и пропускной способности
- •Типы кабелей
- •Экранированная и неэкранированная витая пара
- •Коаксиальный кабель
- •Волоконно-оптический кабель
- •Структурированная кабельная система зданий
- •Вопросы и задания
- •Глава 9. Кодирование и мультиплексирование данных
- •Модуляция Модуляция при передаче аналоговых сигналов
- •Модуляция при передаче дискретных сигналов
- •Комбинированные методы модуляции
- •Дискретизация аналоговых сигналов
- •Методы кодирования Выбор способа кодирования
- •Потенциальный код nrz
- •Биполярное кодирование ami
- •Потенциальный код nrzi
- •Биполярный импульсный код
- •Манчестерский код
- •Потенциальный код 2b1q
- •Избыточный код 4в/5в
- •Скремблирование
- •Компрессия данных
- •Обнаружение и коррекция ошибок
- •Методы обнаружения ошибок
- •Методы коррекции ошибок
- •Мультиплексирование и коммутация
- •Коммутация каналов на основе методов fdm и wdm
- •Коммутация каналов на основе метода tdm
- •Дуплексный режим работы канала
- •Вопросы и задания
- •Глава 10. Беспроводная передача данных
- •Беспроводная среда передачи Преимущества беспроводных коммуникаций
- •Беспроводная линия связи
- •Диапазоны электромагнитного спектра
- •Распространение электромагнитных волн
- •Лицензирование
- •Беспроводные системы Двухточечная связь
- •Связь одного источника и нескольких приемников
- •Связь нескольких источников и нескольких приемников
- •Типы спутниковых систем
- •Геостационарный спутник
- •Средне- и низкоорбитальные спутники
- •Технология широкополосного сигнала
- •Расширение спектра скачкообразной перестройкой частоты
- •Прямое последовательное расширение спектра
- •Множественный доступ с кодовым разделением
- •Вопросы и задания
- •Глава 11. Первичные сети
- •Сети pdh
- •Иерархия скоростей
- •Методы мультиплексирования
- •Синхронизация сетей pdh
- •Ограничения технологии pdh
- •Сети sonet/sdh
- •Иерархия скоростей и методы мультиплексирования
- •Типы оборудования
- •Стек протоколов
- •Кадры stm-n
- •Типовые топологии
- •Методы обеспечения живучести сети
- •Новое поколение протоколов sdh
- •Сети dwdm
- •Принципы работы
- •Волоконно-оптические усилители
- •Типовые топологии
- •Оптические мультиплексоры ввода-вывода
- •Оптические кросс-коннекторы
- •Сети otn Причины и цели создания
- •Иерархия скоростей
- •Стек протоколов otn
- •Кадр otn
- •Выравнивание скоростей
- •Мультиплексирование блоков
- •Коррекция ошибок
- •Вопросы и задания
- •Часть III. Локальные вычислительные сети
- •Глава 12. Технологии локальных сетей на разделяемой среде
- •Общая характеристика протоколов локальных сетей на разделяемой среде Стандартная топология и разделяемая среда
- •Стандартизация протоколов локальных сетей
- •Ethernet со скоростью 10 Мбит/с на разделяемой среде
- •Форматы кадров технологии Ethernet
- •Доступ к среде и передача данных
- •Возникновение коллизии
- •Время оборота и распознавание коллизий
- •Спецификации физической среды
- •Максимальная производительность сети Ethernet
- •Технологии Token Ring и fddi
- •Беспроводные локальные сети ieee 802.11 Проблемы и области применения беспроводных локальных сетей
- •Топологии локальных сетей стандарта 802.11
- •Стек протоколов ieee 802.11
- •Распределенный режим доступа dcf
- •Централизованный режим доступа pcf
- •Безопасность
- •Физические уровни стандарта 802.11
- •Физические уровни стандарта 802.11 1997 года
- •Физические уровни стандартов 802.11а и 802.11b
- •Физический уровень стандарта 802.11g
- •Физический уровень стандарта 802.11n
- •Персональные сети и технология Bluetooth Особенности персональных сетей
- •Архитектура Bluetooth
- •Стек протоколов Bluetooth
- •Кадры Bluetooth
- •Поиск и стыковка устройств Bluetooth
- •Пример обмена данными в пикосети
- •Новые свойства Bluetooth
- •Вопросы и задания
- •Глава 13. Коммутируемые сети Ethernet
- •Мост как предшественник и функциональный аналог коммутатора Логическая структуризация сетей и мосты
- •Алгоритм прозрачного моста ieee 802.1d
- •Топологические ограничения при применении мостов в локальных сетях
- •Коммутаторы Параллельная коммутация
- •Дуплексный режим работы
- •Неблокирующие коммутаторы
- •Борьба с перегрузками
- •Характеристики производительности коммутаторов
- •Скоростные версии Ethernet
- •История создания
- •Физические уровни технологии Fast Ethernet
- •История создания
- •Проблемы совместимости
- •Средства обеспечения диаметра сети в 200 м на разделяемой среде
- •Спецификации физической среды стандарта Gigabit Ethernet
- •Gigabit Ethernet на витой паре категории 5
- •Архитектура коммутаторов
- •Конструктивное исполнение коммутаторов
- •Вопросы и задания
- •Глава 14. Интеллектуальные функции коммутаторов
- •Алгоритм покрывающего дерева
- •Классическая версия stp
- •Три этапа построения дерева
- •Недостатки и достоинства stp
- •Версия rstp
- •Агрегирование линий связи в локальных сетях Транки и логические каналы
- •Борьба с «размножением» пакетов
- •Выбор порта
- •Фильтрация трафика
- •Виртуальные локальные сети
- •Назначение виртуальных сетей
- •Создание виртуальных сетей на базе одного коммутатора
- •Создание виртуальных сетей на базе нескольких коммутаторов
- •Альтернативные маршруты в виртуальных локальных сетях
- •Качество обслуживания в виртуальных сетях
- •Классификация трафика
- •Маркирование трафика
- •Управление очередями
- •Резервирование и профилирование
- •Ограничения коммутаторов
- •Вопросы и задания
- •Часть IV. Сети tcp/ip
- •Глава 15. Адресация в стеке протоколов tcp/ip
- •Стек протоколов tcp/ip
- •Типы адресов стека tcp/ip
- •Локальные адреса
- •Сетевые ip-адреса
- •Доменные имена
- •Формат ip-адреса
- •Классы ip-адресов
- •Особые ip-адреса
- •Использование масок при ip-адресации
- •Порядок назначения ip-адресов
- •Назначение адресов автономной сети
- •Централизованное распределение адресов
- •Адресация и технология cidr
- •Отображение ip-адресов на локальные адреса
- •Протокол разрешения адресов
- •Протокол Proxy-arp
- •Система dns Плоские символьные имена
- •Иерархические символьные имена
- •Обратная зона
- •Протокол dhcp
- •Режимы dhcp
- •Алгоритм динамического назначения адресов
- •Вопросы и задания
- •Глава 16. Протокол межсетевого взаимодействия
- •Формат ip-пакета
- •Упрощенная таблица маршрутизации
- •Просмотр таблиц маршрутизации без масок
- •Примеры таблиц маршрутизации разных форматов
- •Источники и типы записей в таблице маршрутизации
- •Пример ip-маршрутизации без масок
- •Маршрутизация с использованием масок
- •Структуризация сети масками одинаковой длины
- •Просмотр таблиц маршрутизации с учетом масок
- •Использование масок переменной длины
- •Перекрытие адресных пространств
- •Фрагментация ip-пакетов
- •Параметры фрагментации
- •Механизм фрагментации
- •Вопросы и задания
- •Глава 17. Базовые протоколы tcp/ip
- •Протоколы транспортного уровня tcp и udp
- •Порты и сокеты
- •Протокол udp и udp-дейтаграммы
- •Протокол tcp и тср-сегменты
- •Логические соединения — основа надежности tcp
- •Повторная передача и скользящее окно
- •Реализация метода скользящего окна в протоколе tcp
- •Управление потоком
- •Общие свойства и классификация протоколов маршрутизации
- •Протокол rip
- •Построение таблицы маршрутизации
- •Адаптация маршрутизаторов rip к изменениям состояния сети
- •Пример зацикливания пакетов
- •Методы борьбы с ложными маршрутами в протоколе rip
- •Протокол ospf
- •Два этапа построения таблицы маршрутизации
- •Метрики
- •Маршрутизация в неоднородных сетях Взаимодействие протоколов маршрутизации
- •Внутренние и внешние шлюзовые протоколы
- •Протокол bgp
- •Протокол icmp
- •Утилита traceroute
- •Утилита ping
- •Вопросы и задания
- •Глава 18. Дополнительные функции маршрутизаторов ip-сетей
- •Фильтрация
- •Фильтрация пользовательского трафика
- •Фильтрация маршрутных объявлений
- •Стандарты QoS в ip-сетях
- •Модели качества обслуживания IntServ и DiffServ
- •Алгоритм ведра маркеров
- •Случайное раннее обнаружение
- •Интегрированное обслуживание и протокол rsvp
- •Дифференцированное обслуживание
- •Трансляция сетевых адресов
- •Причины подмены адресов
- •Традиционная технология nat
- •Базовая трансляция сетевых адресов
- •Трансляция сетевых адресов и портов
- •Групповое вещание
- •Стандартная модель группового вещания ip
- •Адреса группового вещания
- •Основные типы протоколов группового вещания
- •Протокол igmp
- •Принципы маршрутизации трафика группового вещания
- •Протокол dvmrp
- •Протокол mospf
- •Протокол pim-sm
- •IPv6 как развитие стека tcp/ip
- •Система адресации протокола iPv6
- •Снижение нагрузки на маршрутизаторы
- •Переход на версию iPv6
- •Маршрутизаторы Функции маршрутизаторов
- •Уровень интерфейсов
- •Уровень сетевого протокола
- •Уровень протокола маршрутизации
- •Классификация маршрутизаторов по областям применения
- •Вопросы и задания
- •Часть V. Технологии глобальных сетей
- •Глава 19. Транспортные услуги и технологии глобальных сетей
- •Базовые понятия Типы публичных услуг сетей операторов связи
- •Выделенные каналы для построения частной сети
- •Виртуальная частная сеть
- •Доступ в Интернет
- •Традиционная телефония
- •Многослойная сеть оператора связи
- •Услуги и технологии физического уровня
- •Услуги и технологии пакетных уровней
- •Туннелирование
- •Технология Frame Relay История стандарта
- •Техника продвижения кадров
- •Гарантии пропускной способности
- •Технология atm
- •Ячейки atm
- •Виртуальные каналы atm
- •Категории услуг atm
- •Виртуальные частные сети
- •Ip в глобальных сетях Чистая ip-сеть
- •Протокол hdlc
- •Протокол ррр
- •Использование выделенных линий ip-маршрутизаторами
- •Работа ip-сети поверх сети atm
- •Вопросы и задания
- •Глава 20. Технология mpls
- •Базовые принципы и механизмы mpls Совмещение коммутации и маршрутизации в одном устройстве
- •Пути коммутации по меткам
- •Заголовок mpls и технологии канального уровня
- •Стек меток
- •Протокол ldp
- •Мониторинг состояния путей lsp
- •Тестирование путей lsp
- •Трассировка путей lsp
- •Протокол двунаправленного обнаружения ошибок продвижения
- •Инжиниринг трафика в mpls
- •Отказоустойчивость путей mpls Общая характеристика
- •Использование иерархии меток для быстрой защиты
- •Вопросы и задания
- •Глава 21. Ethernet операторского класса
- •Обзор версий Ethernet операторского класса Движущие силы экспансии Ethernet
- •Разные «лица» Ethernet
- •Стандартизация Ethernet как услуги
- •Технология EoMpls Псевдоканалы
- •Услуги vpws
- •Услуги vpls
- •Ethernet поверх Ethernet Области улучшений Ethernet
- •Разделение адресных пространств пользователей и провайдера
- •Маршрутизация, инжиниринг трафика и отказоустойчивость
- •Функции эксплуатации, администрирования и обслуживания
- •Функции эксплуатации, администрирования и обслуживания в Ethernet
- •Протокол cfm
- •Протокол мониторинга качества соединений y.1731
- •Стандарт тестирования физического соединения Ethernet
- •Интерфейс локального управления Ethernet
- •Мосты провайдера
- •Магистральные мосты провайдера
- •Формат кадра 802.1 ah
- •Двухуровневая иерархия соединений
- •Пользовательские мас-адреса
- •Инжиниринг трафика и отказоустойчивость
- •Магистральные мосты провайдера с поддержкой инжиниринга трафика
- •Вопросы и задания
- •Глава 22. Удаленный доступ
- •Схемы удаленного доступа
- •Типы клиентов и абонентских окончаний
- •Мультиплексирование информации на абонентском окончании
- •Режим удаленного узла
- •Режим удаленного управления и протокол telnet
- •Коммутируемый аналоговый доступ
- •Принцип работы телефонной сети
- •Удаленный доступ через телефонную сеть
- •Коммутируемый доступ через сеть isdn Назначение и структура isdn
- •Интерфейсы bri и pri
- •Стек протоколов isdn
- •Использование сети isdn для передачи данных
- •Технология adsl
- •Доступ через сети catv
- •Беспроводной доступ
- •Вопросы и задания
- •Глава 23. Сетевые службы
- •Электронная почта
- •Электронные сообщения
- •Протокол smtp
- •Непосредственное взаимодействие клиента и сервера
- •Протоколы рорз и imap
- •Протокол http
- •Формат http-сообщений
- •Динамические веб-страницы
- •Ранняя ip-телефония
- •Стандарты н.323
- •Стандарты на основе протокола sip
- •Связь телефонных сетей через Интернет
- •Новое поколение сетей ip-телефонии
- •Распределенные шлюзы и программные коммутаторы
- •Новые услуги
- •Интеграция систем адресации е.164 и dns на основе enum
- •Протокол передачи файлов
- •Основные модули службы ftp
- •Управляющий сеанс и сеанс передачи данных
- •Команды взаимодействия ftp-клиента с ftp-сервером
- •Сетевое управление в ip-сетях Функции систем управления
- •Архитектуры систем управления сетями
- •Вопросы и задания
- •Глава 24. Сетевая безопасность
- •Основные понятия информационной безопасности Определение безопасной системы
- •Угроза, атака, риск
- •Типы и примеры атак Атаки отказа в обслуживании
- •Перехват и перенаправление трафика
- •Внедрение в компьютеры вредоносных программ
- •Троянские программы
- •Сетевые черви
- •Шпионские программы
- •Методы обеспечения информационной безопасности
- •Классификация методов защиты
- •Политика безопасности
- •Шифрование
- •Симметричные алгоритмы шифрования
- •Алгоритм des
- •Несимметричные алгоритмы шифрования
- •Алгоритм rsa
- •Односторонние функции шифрования
- •Аутентификация, авторизации, аудит Понятие аутентификации
- •Авторизация доступа
- •Строгая аутентификация на основе многоразового пароля в протоколе chap
- •Аутентификация на основе одноразового пароля
- •Аутентификация на основе сертификатов
- •Сертифицирующие центры
- •Инфраструктура с открытыми ключами
- •Аутентификация информации
- •Цифровая подпись
- •Аутентификация программных кодов
- •Антивирусная защита
- •Сканирование сигнатур
- •Метод контроля целостности
- •Сканирование подозрительных команд
- •Отслеживание поведения программ
- •Сетевые экраны
- •Типы сетевых экранов разных уровней
- •Реализация
- •Архитектура
- •Прокси-серверы
- •Функции прокси-сервера
- •Прокси-серверы прикладного уровня и уровня соединений
- •«Проксификация» приложений
- •Системы обнаружения вторжений
- •Протоколы защищенного канала. IPsec
- •Иерархия технологий защищенного канала
- •Распределение функций между протоколами ipSec
- •Безопасная ассоциация
- •Транспортный и туннельный режимы
- •Протокол ан
- •Протокол esp
- •Базы данных sad и spd
- •Сети vpn на основе шифрования
- •Вопросы и задания
- •Рекомендуемая и использованная литература
Технология Frame Relay История стандарта
Пакетная технология глобальных сетей Frame Relay появилась в конце 80-х годов в связи с распространением высокоскоростных и надежных цифровых каналов технологий PDH и SDH. До этого основной технологией глобальных сетей являлась технология Х.25, сложный стек которой был рассчитан на низкоскоростные аналоговые каналы, отличавшиеся к тому же высоким уровнем помех и, следовательно, ошибок в передаче данных. Особенностью Frame Relay является простота; освободившись от многих ненужных в современном телекоммуникационном мире функций, эта технология предоставляет только тот минимум услуг, который необходим для доставки кадров адресату. Вместе с тем разработчики технологии Frame Relay сделали важный шаг вперед, предоставив пользователям сети гарантию пропускной способности сетевых соединений — свойство, которое до появления Frame Relay технологии пакетных сетей стандартным способом не поддерживали.
Техника продвижения кадров
Технология Frame Relay основана на использовании техники виртуальных каналов, которую мы кратко рассмотрели в главе 3. Техника виртуальных каналов является компромиссом между неопределенностью дейтаграммного способа продвижения пакетов, используемого, например, в сетях Ethernet и IP, и жесткостью коммутации каналов, которая свойственна технологиям первичных и телефонных сетей.
Рассмотрим технику виртуальных каналов сетей Frame Relay на примере сети, изображенной на рис. 19.8.
Рис. 19.8. Продвижение кадров вдоль виртуальных каналов FR
Для того чтобы конечные узлы сети — компьютеры CI, С2, СЗ и сервер С4 — могли обмениваться данными, в сети необходимо предварительно проложить виртуальные каналы. В нашем примере установлено три таких канала — между компьютерами С1 и С2 через коммутатор 51; между компьютером С1 и сервером С4 через коммутаторы 51 и 52; между компьютером СЗ и сервером С4 через коммутатор 52.
Виртуальные каналы Frame Relay могут быть как однонаправленными (то есть способными передавать кадры только в одном направлении), так и двунаправленными.
Будем считать, что в примере на рис. 19.8 установлены двунаправленные каналы. Процедура установления виртуальных каналов Frame Relay заключается в формировании таблиц коммутации в коммутаторах сети. Такие процедуры могут выполняться как вручную, так и системами управления сетью.
Виртуальные каналы Frame Relay относятся к типу постоянных виртуальных каналов (Permanent Virtual Circuit, PVC), они заранее устанавливаются по командам оператора сети.
В таблице коммутации каждого коммутатора должны быть сделаны две записи (для каждого из двух направлений) о каждом из виртуальных каналов, проходящих через данный коммутатор.
Запись таблицы коммутации состоит из четырех основных полей, каковыми являются:
□ номер входного порта канала;
□ входная метка канала в поступающих на входной порт пакетах;
□ номер выходного порта;
□ выходная метка канала в передаваемых через выходной порт пакетах.
Например, вторая запись в таблице коммутации коммутатора 51 (запись 1-102-3-106) означает, что все пакеты, которые поступят на порт 1 с идентификатором виртуального канала 102, будут продвигаться на порт 3, а в поле идентификатора виртуального канала появится новое значение — 106. Так как виртуальные каналы в нашем примере двунаправленные, то для каждого канала в таблице коммутации должно существовать две записи, описывающие преобразование метки в каждом из направлений. Так, для записи 1-102-3-106 существует запись 3-106-1-102.
Метки виртуального канала имеют локальное для коммутатора и его порта значение, то есть они никаким образом не принимаются во внимание на портах других коммутаторов.
Комбинации «метка-порт» должны быть уникальными в пределах одного коммутатора.
Непосредственно соединенные порты двух коммутаторов должны использовать согласованные значения меток для каждого виртуального канала, проходящего через эти порты.
Метка виртуального канала является локальным адресом этого канала, формально метка FR имеет название DLCI (Data Link Connection Identifier — идентификатор соединения уровня канала данных).
Метки DLCI переносятся кадрами FR; формат такого кадра показан на рис. 19.9.
Рис. 19.9. Формат кадра FR
Поле DLCI состоит из 10 бит, что позволяет задействовать до 1024 виртуальных соединений. Поле DLCI может занимать и большее число разрядов — этим управляют признаки расширения адреса EA0 и ЕА1 (аббревиатура ЕА как раз и означает Extended Address, то есть расширенный адрес). Если бит расширения адреса установлен в ноль, то признак называется EA0 и означает, что в следующем байте имеется продолжение поля адреса, а если бит расширения адреса равен 1, то поле называется ЕА1 и означает окончание поля адреса. Десятиразрядный формат DLCI является основным, но при использовании трех байтов для адресации поле DLCI имеет длину 16 бит, а при использовании четырех байтов — 23 бита.
Поле данных может иметь размер до 4056 байт.
Поле C/R переносит признак команды (Command) или ответа (Response). Этот признак является унаследованным от протоколов Х.25 и в операциях FR не используется.
Поля DE (Discard Eligibility), FECN (Forward-explicit congestion notification) и BECN (Backward-explicit congestion notification) используются протоколом FR для оповещения коммутаторов сети FR о возможности отбрасывания кадров (DE), а также о перегрузке в сети (FECN и BECN).
После того как виртуальные каналы установлены, конечные узлы могут использовать их для обмена информацией.
Для этого администратор сети должен для каждого конечного узла создать статические записи таблицы ARP. В каждой такой записи устанавливается соответствие между IP- адресом узла назначения и начальным значением метки виртуального канала, ведущего к этому узлу. Например, в таблице ARP компьютера С1 должна присутствовать запись, отображающая IP-адрес сервера С4 на метку 102 для виртуального канала, ведущего к серверу С4.
Давайте сейчас проследим путь одного кадра, отправленного компьютером С1 серверу С4. При отправлении кадра (этап 1 на рис. 19.8) компьютер помещает в поле адреса начальное значение метки 102, взятое из его таблицы ARP.
Коммутатор S1, получив на порт 1 кадр с меткой 102, просматривает свою таблицу коммутации и находит, что такой кадр должен быть переправлен на порт 3, а значение метки в нем должно быть заменено на 106.
ПРИМЕЧАНИЕ
Операция по замене метки (label swapping) характерна для всех технологий, использующих технику виртуальных каналов. Может возникнуть законный вопрос: «А зачем менять значение метки на каждом коммутаторе? Почему бы не назначить каждому виртуальному каналу одно неизменяемое значение метки, которая бы играла роль физического адреса узла назначения?» Ответ состоит в том, что в первом случае уникальность меток достаточно обеспечивать в пределах каждого отдельного порта, а во втором — в пределах всей сети, что гораздо сложнее, так как требует наличия в сети централизованной службы назначения меток.
В результате действий коммутатора S1 кадр отправляется через порт 3 к коммутатору S2 (этап 2). Коммутатор 52, используя свою таблицу коммутации, находит соответствующую запись, заменяет значение метки на 117 и отправляет кадр узлу назначения — серверу С4. На этом обмен заканчивается, а при отправке ответа сервер С4 задействует метку 117 как адрес виртуального канала, ведущего к компьютеру С1.
Как видно из этого описания, коммутация выполняется очень экономично, так как преобразования передаваемых кадров минимальны — они сводятся только к замене значения метки. В кадрах указывается только адрес назначения, роль которого в сетях Frame Relay играет метка. В качестве адреса отправителя может быть использовано последнее значение метки, оно однозначно определяет путь в обратном направлении по виртуальному каналу, соединяющему получателя и отправителя.