Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебник Компьютерные сети. Изд.4.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
21.96 Mб
Скачать

Мультиплексирование блоков

При мультиплексировании блоков ODU поле пользовательских данных блока OPUk разбивается на так называемые трибутарные слоты (Tributary Slot, TS), в которые помещаются данные блока OPUk-1.

На рис. 11.24 показан пример мультиплексирования четырех блоков ODU1 в один блок ODU2. Как видно из рисунка, поле данных блока OPU2 разбито на трибутарные слоты TribSlotl, TribSlot2, TribSlot3 и TribSlot4, последовательность которых повторяется. Каж­дый из этих четырех трибутарных слотов предназначен для переноса части поля данных одного из блоков OPU1. Здесь используется техника чередования данных скорости более низкого уровня иерархии скоростей в поле данных блока более высокой скорости иерархии скоростей, которая типична для технологий синхронного временного мультиплексирования. Эта техника обеспечивает выполнение операций мультиплексирования и демультиплексирования «на лету» без промежуточной буферизации, так как частота появления порций данных OPU1 в блоке ODU2 соответствует частоте их появления в том случае, если бы они передавались на скорости OPU1.

Рис. 11.24. Мультиплексирование блоков ODU1 в блок ODU2

Техника мультиплексирования блоков ODU1 и ODU2 в блок ODU3 аналогична, если не считать того, что в блоке OPU3 используется 16 различных трибутарных слотов, что по­зволяет поместить в него 16 блоков ODU1 или 4 блока ODU2 (в этом случае одной порции OPU2 соответствует четыре трибутарных слота ODU3).

Информация об использовании трибутарных слотов хранится в специальном разделе поля OPU2 ОН или OPU3 ОН. Этот раздел может также запоминать информацию о виртуальной конкатенации блоков ODU1 или ODU2 — эта техника также поддерживается в сетях OTN.

Коррекция ошибок

В OTN применяется процедура прямой коррекции ошибок (FEC), в которой используются коды Рида—Соломона RS(255,239). В этом самокорректирующемся коде данные кодируются блоками по 255 байт, из которых 239 байт являются пользовательскими, а 16 байт представляют собой корректирующий код. Коды Рида—Соломона позволяют исправлять до 8 ошибочных байт в блоке из 255 байт, что является очень хорошей характеристикой для самокорректирующего кода.

Применение кода Рида—Соломона позволяет улучшить отношение мощности сигнала к мощности шума на 5 дБ при уровне битовых ошибок в 10 12. Этот эффект дает возможность увеличить расстояние между регенераторами сети на 20 км или использовать менее мощные передатчики сигнала.

Выводы

Первичные сети предназначены для создания коммутируемой инфраструктуры, с помощью которой можно достаточно быстро создать постоянные каналы, организующие произвольную топологию. В первичных сетях используют технику коммутации каналов различного типа: с частотным (FDM), временном (TDM) и волновым (WDM/DWDM) мультиплексированием.

В сетях FDM каждому абонентскому каналу выделяется полоса частот шириной 4 кГц. Существует иерархия каналов FDM, при этом 12 абонентских каналов образуют группу каналов первого уровня иерархии (базовую группу) с полосой 48 кГц, 5 каналов первого уровня объединяются в канал второго уровня иерархии (супергруппу) с полосой 240 кГц, а 10 каналов второго уровня составляют канал третьего уровня иерархии (главную группу) с полосой в 2,4 МГц.

Цифровые первичные сети PDH позволяют образовывать каналы с пропускной способностью от 64 Кбит/с до 140 Мбит/с, предоставляя своим абонентам скорости четырех уровней иерархии. Недостатком сетей PDH является невозможность непосредственного выделения данных низкоско­ростного канала из данных высокоскоростного канала, если каналы работают на несмежных уровнях иерархии скоростей.

Асинхронность ввода абонентских потоков в кадр SDH обеспечивается благодаря концепции виртуальных контейнеров и системы плавающих указателей, отмечающих начало пользовательских данных в виртуальном контейнере.

Мультиплексоры SDH могут работать в сетях с различной топологией (цепи, кольца, ячеистая топология). Различают несколько специальных типов мультиплексоров, которые занимают особое место в сети: терминальные мультиплексоры, мультиплексоры ввода-вывода, кросс-коннекторы. В сетях SDH поддерживается большое количество механизмов отказоустойчивости, которые защищают трафик данных на уровне отдельных блоков, портов или соединений: EPS, CP, MSP, SNC-P и MS-SPRing. Наиболее эффективная схема защиты выбирается в зависимости от логической топологии соединений в сети.

Технология WDM/DWDM реализует принципы частотного мультиплексирования для сигналов иной физической природы и на новом уровне иерархии скоростей. Каждый канал WDM/DWDM представ­ляет собой определенный диапазон световых волн, позволяющих переносить данные в аналоговой и цифровой форме, при этом полоса пропускания канала в 25-50-100 ГГц обеспечивает скорости в несколько гигабит в секунду (при передаче дискретных данных).

В ранних системах WDM использовалось небольшое количество спектральных каналов, от 2 до 16. В системах DWDM задействовано уже от 32 до 160 каналов на одном оптическом волокне, что обе­спечивает скорости передачи данных для одного волокна до нескольких терабит в секунду. Современные оптические усилители позволяют удлинить оптический участок линии связи (без пре­образования сигнала в электрическую форму) до 700-1000 км.

Для выделения нескольких каналов из общего светового сигнала разработаны сравнительно недорогие устройства, которые обычно объединяются с оптическими усилителями для организации мультиплексоров ввода-вывода в сетях дальней связи.

Для взаимодействия с традиционными оптическими сетями (SDH, Gigabit Ethernet, 10G Ethernet) в сетях DWDM применяются транспондеры и трансляторы длин волн, которые преобразуют длину волны входного сигнала в длину одной из волн стандартного частотного плана DWDM.

В полностью оптических сетях все операции мультиплексирования и коммутации каналов выполняются над световыми сигналами без их промежуточного преобразования в электрическую форму. Это упрощает и удешевляет сеть.

Технология OTN позволяет более эффективно использовать спектральные каналы сетей DWDM, поддерживая экономные схемы мультиплексирования данных на высоких скоростях. Мощный механизм коррекции ошибок OTN FEC, использующий самокорректирующиеся коды Рида—Соломона, позволяет улучшить отношение сигнал/шум в спектральных каналах и увеличить расстояние между регенераторами сети.