Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебник Компьютерные сети. Изд.4.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
21.96 Mб
Скачать

Оптические мультиплексоры ввода-вывода

Оптический мультиплексор выполняет операции смешения нескольких длин волн в общий сигнал, а также выделения волн различной длины из общего сигнала. Для выделения волн в мультиплексоре могут использоваться разнообразные оптические механизмы. В оптических мультиплексорах, поддерживающих сравнительно небольшое количество длин волн в волокне, обычно 16 или 32, применяются тонкопленочные фильтры. Они состоят из пластин с многослойным покрытием, в качестве такой пластины на практике применяется торец оптического волокна, скошенный под углом 30-45°, с нанесенным на него слоями покрытия. Для систем с большим числом волн требуются другие принципы фильтрации и мультиплексирования.

В мультиплексорах DWDM применяются интегрально выполненные дифракционные фазовые решетки, или дифракционные структуры (Arrayed Waveguide Grating, AWG). Функции пластин в них выполняют оптические волноводы или волокна. Приходящий мультиплексный сигнал попадает на входной порт (рис. 11.19, а).

Рис. 11.19. Полное демультиплексирование сигнала с помощью дифракционной фазовой решетки

Затем этот сигнал проходит через волновод-пластину и распределяется по множеству волноводов, представляющих дифракционную структуру AWG. Сигнал в каждом из волноводов по-прежнему является мультиплексным, а каждый канал (λ1, λ2, …, λn) остается представленным во всех волноводах. Далее происходит отражение сигналов от зеркальной поверхности, и в итоге световые потоки вновь собираются в волноводе-пластине, где происходит их фокусировка и интерференция — образуются пространственно разнесенные интерференционные максимумы интенсивности, соответствующие разным каналам. Геометрия волновода-пластины, в частности расположение выходных полюсов, и значения длины волноводов структуры AWG рассчитываются таким образом, чтобы интерференционные максимумы совпадали с выходными полюсами. Мультиплексирование происходит обратным путем. Другой способ построения мультиплексора базируется не на одной, а на паре волноводов-пластин (рис. 11.19, б).

Принцип действия такого устройства аналогичен предыдущему случаю за исключением того, что здесь для фокусировки и интерференции используется дополнительная пластина.

Интегральные решетки AWG (называемые также фазарами) стали одними из ключевых элементов мультиплексоров DWDM. Они обычно применяются для полного демультиплексирования светового сигнала, так как хорошо масштабируются и потенциально могут успешно работать в системах с сотнями спектральных каналов.

Оптические кросс-коннекторы

В сетях с ячеистой топологией необходимо обеспечить гибкие возможности для изменения маршрута следования волновых соединений между абонентами сети. Такие возможности предоставляют оптические кросс-коннекторы, позволяющие направить любую из волн входного сигнала каждого порта в любой из выходных портов (конечно, при условии, что никакой другой сигнал этого порта не использует эту волну, иначе необходимо выполнить трансляцию длины волны).

Существуют оптические кросс-коннекторы двух типов:

оптоэлектронные кросс-коннекторы с промежуточным преобразованием в электрическую форму;

полностью оптические кросс-коннекторы, или фотонные коммутаторы.

Исторически первыми появились оптоэлектронные кросс-коннекторы, за которыми и за­крепилось название оптических кросс-коннекторов. Поэтому производители полностью оптических устройств этого типа стараются использовать для них другие названия: фотонные коммутаторы, маршрутизаторы волн, лямбда-маршрутизаторы. У оптоэлектронных кросс-коннекторов имеется принципиальное ограничение — они хорошо справляются со своими обязанностями при работе на скоростях до 2,5 Гбит/с, но начиная со скорости 10 Гбит/с и выше, габариты таких устройств и потребление энергии превышают допустимые пределы. Фотонные коммутаторы свободны от такого ограничения.

В фотонных коммутаторах используются различные оптические механизмы, в том числе дифракционные фазовые решетки и микроэлектронные механические системы (Micro-Electro Mechanical System, MEMS).

MEMS представляет собой набор подвижных зеркал очень маленького (диаметром менее миллиметра) размера (рис. 11.20).

Рис. 11.20. Микроэлектронная механическая система кросс-коммутации

Коммутатор на основе MEMS включается в работу после демультиплексора, когда исходный сигнал уже разделен на составляющие волны. За счет поворота микрозеркала на заданный угол исходный луч определенной волны направляется в соответствующее выходное волокно. Затем все лучи мультиплексируются в общий выходной сигнал.

Но сравнению с оптоэлектронными кросс-коннекторами фотонные коммутаторы занимают объем в 30 раз меньше и потребляют примерно в 100 раз меньше энергии. Однако у устройств этого типа низкое быстродействие, к тому же они чувствительны к вибрации. Тем не менее системы MEMS находят широкое применение в новых моделях фотонных коммутаторов. Сегодня подобные устройства могут обеспечивать коммутацию 256 х 256 спектральных каналов, планируется выпуск устройств с возможностями коммутации 1024 х 1024 каналов и выше.