Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебник Компьютерные сети. Изд.4.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
21.96 Mб
Скачать

Дуплексный режим работы канала

Дуплексный режим — это наиболее универсальный и производительный режим работы канала. Самым простым вариантом организации дуплексного режима является использование двух независимых линий связи (двух пар проводников или двух оптических волокон) в кабеле, каждая из которых работает в симплексном режиме, то есть передает данные в одном направлении. Именно такая идея лежит в основе реализации дуплексного режима работы многих сетевых технологий, например Fast Ethernet или ATM. Иногда такое простое решение оказывается недоступным или неэффективным, например, когда прокладка второй линии связи ведет к большим затратам. Так, при обмене данными с помощью модемов через телефонную сеть у пользователя имеется только одна линия связи с телефонной станцией — двухпроводная. В таких случаях дуплексный режим рабо­ты организуемся на основе разделения линии связи на два логических канала с помощью техники FDM или TDM.

При использовании техники FDM для организации дуплексного канала диапазон частот делится на две части. Деление может быть симметричным и асимметричным, в последнем случае скорости передачи информации в каждом направлении различаются (популярный пример такого подхода — технология ADSL, служащая для широкополосного доступа в Интернет). В случае, когда техника FDM обеспечивает дуплексный режим работы, ее называют дуплексной связью с частотным разделением (Frequency Division Duplex, FDD).

При цифровом кодировании дуплексный режим на двухпроводной линии организуется с помощью техники TDM. Часть тайм-слотов служит для передачи данных в одном направлении, часть — в другом. Обычно тайм-слоты противоположных направлений чередуются, из-за чего такой способ иногда называют «пинг-понговой» передачей. Дуплексный режим TDM получил название дуплексной связи с временном разделением (Time Division Duplex, TDD).

В волоконно-оптических кабелях с одним оптическим волокном для организации дуплексного режима работы может применяться технология DWDM. Передача данных в одном направлении осуществляется с помощью светового пучка одной длины волны, в обратном — другой длины волны. Собственно, решение частной задачи — создание двух независимых спектральных каналов в одном окне прозрачности оптического волокна — и привело к рождению технологии WDM, которая затем трансформировалась в DWDM. Появление мощных процессоров для цифровой обработки сигналов (Digital Signal Processor, DSP), способных выполнять сложные алгоритмы обработки сигналов в реаль­ном времени, сделало возможным еще один вариант дуплексной работы. Два передатчика работают одновременно навстречу друг другу, создавая в канале суммарный аддитивный сигнал. Так как каждый передатчик знает спектр собственного сигнала, то он вычитает его из суммарного сигнала, получая в результате сигнал, посылаемый другим передатчиком.

Выводы

Для представления дискретной информации применяются сигналы двух типов: прямоугольные импульсы и синусоидальные волны. В первом случае используют термин «кодирование», во втором — «модуляция».

При модуляции дискретной информации единицы и нули кодируются изменением амплитуды, частоты или фазы синусоидального сигнала.

Аналоговая информация может передаваться по линиям связи в цифровой форме. Это повышает качество передачи, так как позволяет применять эффективные методы обнаружения и исправления ошибок, недоступные для систем аналоговой передачи. Для качественной передачи голоса в цифровой форме используется частота оцифровывания в 8 кГц, когда каждое значение амплитуды голоса представляется 8-битным числом. Это определяет скорость голосового канала в 64 Кбит/с. При выборе способа кодирования нужно одновременно стремиться к достижению нескольких целей: минимизировать возможную ширину спектра результирующего сигнала, обеспечивать синхрониза­цию между передатчиком и приемником, обеспечивать устойчивость к шумам, обнаруживать и по возможности исправлять битовые ошибки, минимизировать мощность передатчика. Спектр сигнала является одной из наиболее важных характеристик способа кодирования. Более узкий спектр сигналов позволяет добиваться более высокой скорости передачи данных при фиксированной полосе пропускания среды.

Код должен обладать свойством самосинхронизации, то есть сигналы кода должны содержать признаки, по которым приемник может определить, в какой момент времени нужно осуществлять распознавание очередного бита.

При дискретном кодировании двоичная информация представляется различными уровнями посто­янного потенциала или полярностью импульса.

Наиболее простым потенциальным кодом является код без возвращения к нулю (NRZ), однако он не является самосинхронизирующимся.

Для улучшения свойств потенциального кода NRZ используются методы, основанные на введении избыточных битов в исходные данные и на скрэмблировании исходных данных. Коды Хэмминга и сверточные коды позволяют не только обнаруживать, но и исправлять многократные ошибки. Эти коды наиболее часто используются для прямой коррекции ошибок (FEC). Для повышения полезной скорости передачи данных в сетях применяется динамическая компрессия данных на основе различных алгоритмов. Коэффициент сжатия зависит от типа данных и применяемого алгоритма и может колебаться в пределах от 1:2 до 1:8.

Для образования нескольких каналов в линии связи используются различные методы мультиплексирования, включая частотное (FDM), временнбе (TDM) и волновое (WDM) мультиплексирование, а также множественный доступ с кодовым разделением (CDMA). Техника коммутации пакетов сочетается только с методом TDM, а техника коммутации каналов позволяет использовать любой тип мультиплексирования.