
- •Курс лекций по дисциплине
- •Для специальностей
- •Минск 2010
- •Тема 19. Динамическое программирование 73
- •Тема 20. Использование имитационного моделирования в процессе принятия управленческих решений 89
- •Тема 21. Многокритериальные задачи теории принятия решений 103
- •Тема 22. Экспертизы и обработка экспертных оценок как база решения сложных проблемных ситуаций. Методы дерева целей и анализа иерархий 117
- •Тема 11. Предмет, задачи и основные понятия теории принятия решений Основные понятия и определения
- •11.1. Объект и предмет исследования теории принятия решений. Назначение теории принятия решений и ее основные понятия
- •11.2. Этапы процесса моделирования.
- •11.3. Классификация задач принятия решений
- •Вопросы для самоконтроля
- •Тема 12. Использование целочисленной оптимизации в задачах теории принятия решений Основные понятия и определения
- •12.1. Сущность целочисленной оптимизации (целочисленного линейного программирования (цлп))
- •Задача о распределении бюджета
- •12.2. Использование логических условий и формирование зависимых решений с помощью целочисленных переменных
- •Вопросы для самоконтроля
- •Тема 13. Игровые модели теории принятия решений Основные понятия и определения
- •13.1 Теория игр как раздел теории принятия решений. Матричные игры с нулевой суммой
- •Решение парных матричных игр с нулевой суммой. Принцип минимакса.
- •13.2 Игры без седловых точек. Использование линейной оптимизации
- •Вопросы для самоконтроля
- •Тема 14. Игры с природой Основные понятия и определения
- •14.1 Игры с природой в условиях риска
- •14.2 Игры с природой в условиях неопределенности
- •14.3 Многоэтапные процессы принятия решений
- •Вопросы для самоконтроля
- •Тема 15. Сетевые модели теории принятия решений Основные понятия и определения
- •15.1. Понятие о методах сетевого планирования и управления (спу)
- •15.2. Понятие о сетевых моделях и правила построения сетевых графиков
- •15.3. Расчет критического пути сетевого графика
- •Тема 16. Оптимизация сетевых потоков Основные понятия и определения
- •16.1. Задача о максимальном потоке
- •16.2. Задача о потоке минимальной стоимости
- •16.3. Задача о кратчайшем маршруте
- •Тема 17. Сетевое планирование в условиях неопределенности Основные понятия и определения
- •17.1. Общая характеристика, область использования и алгоритм определения временных параметров проекта по методу pert
- •17.2. Обоснование и использование центральной предельной теоремы при расчетах вероятности выполнения проекта в директивный срок
- •17.3. Понятие о стохастических сетях
- •18.1. Характеристика стохастических задач, решаемых в условиях риска
- •18.2. Простейшие методы решения стохастических задач: мм-постановка, mp-постановка (задача с вероятностными ограничениями), pp-постановка
- •Вопросы для самоконтроля
- •Тема 19. Динамическое программирование Основные понятия и определения
- •19.1. Понятие о динамическом программировании.
- •19.2. Принцип оптимальности Беллмана и алгоритм решения задач динамического программирования
- •19.3. Вероятностное динамическое программирование и марковские процессы принятия решений
- •19.4. Определение оптимальной стратегии, максимизирующей ожидаемый доход в случае конечного горизонта планирования
- •19.5. Определение оптимальной стратегии для процесса с бесконечным числом этапов (оптимальная долгосрочная стратегия)
- •Вопросы для самоконтроля
- •Тема 20. Использование имитационного моделирования в процессе принятия управленческих решений Основные понятия и определения
- •20.1 Виды имитационного моделирования
- •1. Произошло ли событие a?
- •Какое из нескольких событий произошло?
- •Какое значение приняла случайная величина ?
- •Какую совокупность значений приняли случайные величины ?
- •20.2 Имитационное моделирование как метод анализа инвестиционных проектов
- •20.3 Имитационное моделирование денежных потоков проекта
- •20.4 Имитационное моделирование чистой приведенной стоимости проекта
- •Вопросы для самоконтроля
- •Тема 21. Многокритериальные задачи теории принятия решений Основные понятия и определения
- •21.1 Классификация многокритериальных задач
- •21.2 Принцип оптимальности Парето.
- •21.3 Принцип равновесия по Нэшу
- •21.4 Обзор методов решения задач векторной оптимизации
- •1. Методы свертки системы показателей эффективности
- •Вопросы для самоконтроля
- •Тема 22. Экспертизы и обработка экспертных оценок как база решения сложных проблемных ситуаций. Методы дерева целей и анализа иерархий Основные понятия и определения
- •22.1 Экспертное оценивание важности объектов
- •22.1.1 Усреднение экспертных оценок
- •22.1.2 Попарное сравнение объектов
- •22.2 Назначение сложных экспертиз
- •22.3 Экспертный анализ сложной проблемы с помощью дерева целей
- •22.4 Метод анализа иерархий: особенности и область применимости
- •Вопросы для самоконтроля
15.2. Понятие о сетевых моделях и правила построения сетевых графиков
Сетевая модель отражает комплекс работ и событий проекта в их логической и технологической последовательности. Анализ сетевой модели позволяет выявить взаимосвязи этапов проекта и определить оптимальный порядок их выполнения, например, для сокращения сроков реализации проекта.
Математический аппарат сетевых моделей базируется на теории графов. Графом называется множество точек (вершин), определенные пары которых соединены отрезками. Отрезки называются дугами, если указано, какая из двух вершин является начальной, или ребрами, если ориентация не указана. Граф, состоящий из дуг, называется ориентированным (орграфом), образованный ребрами - неориентированным.
Пример ориентированного графа (орграфа)
Пример неориентированного графа
Последовательность дуг или ребер, ведущая от некоторой вершины к другой, образует путь.
Сетевая модель представляется сетевым графиком, определяющим логическую взаимосвязь работ (понятия сетевой модели и сетевого графика используются часто как синонимы).
Сетевые графики представляют собой ориентированные графы, дугам или вершинам которых приписаны некоторые числовые значения.
Вершины или события соответствуют моментам начала или окончания одной или нескольких операций, а дуги – операциям.
Различают три вида событий: исходное, завершающее и промежуточное. С исходного события начинается выполнение проекта. Завершающее событие соответствует достижению конечной цели, т. е. завершению комплекса операций. Сетевые графики с несколькими завершающими событиями называются многоцелевыми. К промежуточным относятся все прочие события.
Моментом свершения события считается момент окончания выполнения всех входящих в это событие операций. До этого момента не может быть начата ни одна из непосредственно следующих за событием операций.
Различают три вида операций:
1
)
действительная
операция
( ) требует затрат времени и
ресурсов (разработка проекта, подвоз
материалов, выполнение монтажных работ);
2
)
операция
- ожидание
( ) требует только затрат времени
(затвердение бетона, сушка штукатурки
перед началом малярных работ, рост
растений и т. д.);
3) фиктивная операция ( ) - технологическая или ресурсная зависимость в выполнении некоторых операций.
При построении сетевых графиков соблюдается ряд правил:
1) в сети не должно быть событий (кроме исходного), в которые не входит ни одна дуга;
2) не должно быть событий (кроме завершающего), из которых не выходит ни одной дуги;
3) сеть не должна содержать замкнутых контуров (циклов);
4)
любая пара событий сетевого графика
может быть соединена не более чем одной
дугой. Например, для трех одновременно
выполняемых операций
,
,
на Рис. 15.1. возникает путаница из-за
того, что они имеют одинаковое обозначение
(3,6). В этом случае вводятся дополнительные
события и новые фиктивные операции;
5) номер начального события любой операции должен быть меньше номера ее конечного события.
Построение сетевого графика начинается с составления списка необходимых операций. Их продолжительность устанавливается на основе нормативов или по аналогии с ранее выполнявшимися операциями. Такие временные оценки называются детерминированными. При отсутствии нормативов определяются вероятностные временные оценки. После составления списка операций приступают к построению графика.
Рассмотрим проект, представленный с помощью следующей таблицы:
Таблица 1. Описание составных работ проекта
Работа |
Непосредственно предшествующие работы |
Время выполнения |
A |
--- |
|
B |
--- |
|
C |
B |
|
D |
A, C |
|
E |
C |
|
F |
C |
|
G |
D, E, F |
|
Анализ последовательности и взаимозависимости работ, приведенных в таблице, позволяет построить сетевой график (Рис. 2).
Рис. 15.2. Сетевой график рассматриваемого проекта.
Здесь использованы две фиктивные работы (3,4) и (5,6). Они не требуют затрат времени и используются лишь для того, чтобы правильно отобразить взаимосвязь между работами.